Suppr超能文献

肌肉减少神经元信息负荷:生物与机器人指向及行走中控制努力的量化

Muscles Reduce Neuronal Information Load: Quantification of Control Effort in Biological vs. Robotic Pointing and Walking.

作者信息

Haeufle Daniel F B, Wochner Isabell, Holzmüller David, Driess Danny, Günther Michael, Schmitt Syn

机构信息

Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.

出版信息

Front Robot AI. 2020 Jun 24;7:77. doi: 10.3389/frobt.2020.00077. eCollection 2020.

Abstract

It is hypothesized that the nonlinear muscle characteristic of biomechanical systems simplify control in the sense that the information the nervous system has to process is reduced through off-loading computation to the morphological structure. It has been proposed to quantify the required information with an information-entropy based approach, which evaluates the minimally required information to control a desired movement, i.e., control effort. The key idea is to compare the same movement but generated by different actuators, e.g., muscles and torque actuators, and determine which of the two morphologies requires less information to generate the same movement. In this work, for the first time, we apply this measure to numerical simulations of more complex human movements: point-to-point arm movements and walking. These models consider up to 24 control signals rendering the brute force approach of the previous implementation to search for the minimally required information futile. We therefore propose a novel algorithm based on the pattern search approach specifically designed to solve this constraint optimization problem. We apply this algorithm to numerical models, which include Hill-type muscle-tendon actuation as well as ideal torque sources acting directly on the joints. The controller for the point-to-point movements was obtained by deep reinforcement learning for muscle and torque actuators. Walking was controlled by proprioceptive neural feedback in the muscular system and a PD controller in the torque model. Results show that the neuromuscular models consistently require less information to successfully generate the movement than the torque-driven counterparts. These findings were consistent for all investigated controllers in our experiments, implying that this is a system property, not a controller property. The proposed algorithm to determine the control effort is more efficient than other standard optimization techniques and provided as open source.

摘要

据推测,生物力学系统的非线性肌肉特性简化了控制,因为通过将计算卸载到形态结构上,神经系统需要处理的信息减少了。有人提出用一种基于信息熵的方法来量化所需信息,该方法评估控制期望运动所需的最小信息,即控制努力。关键思想是比较由不同致动器(例如肌肉和扭矩致动器)产生的相同运动,并确定两种形态中的哪一种在产生相同运动时需要更少的信息。在这项工作中,我们首次将这种测量方法应用于更复杂的人体运动的数值模拟:点对点手臂运动和行走。这些模型考虑了多达24个控制信号,使得先前实现中寻找最小所需信息的暴力方法变得徒劳无功。因此,我们提出了一种基于模式搜索方法的新颖算法,专门设计用于解决此约束优化问题。我们将此算法应用于数值模型,其中包括希尔型肌腱驱动以及直接作用于关节的理想扭矩源。点对点运动的控制器是通过对肌肉和扭矩致动器的深度强化学习获得的。行走由肌肉系统中的本体感觉神经反馈和扭矩模型中的PD控制器控制。结果表明,与扭矩驱动的对应模型相比,神经肌肉模型在成功产生运动时始终需要更少的信息。在我们的实验中,这些发现对于所有研究的控制器都是一致的,这意味着这是一种系统属性,而不是控制器属性。所提出的确定控制努力的算法比其他标准优化技术更有效,并作为开源提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c2e/7805995/54464d3ba035/frobt-07-00077-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验