Suppr超能文献

一种含膦酸酯的荧光团,能够选择性诱导癌细胞凋亡。

A Phosphinate-Containing Fluorophore Capable of Selectively Inducing Apoptosis in Cancer Cells.

机构信息

Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA.

Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, 68588, USA.

出版信息

Chembiochem. 2019 Jul 1;20(13):1712-1716. doi: 10.1002/cbic.201800811. Epub 2019 May 3.

Abstract

Chemotherapeutic agents generally suffer from off-target cytotoxicity in noncancerous cell types, leading to undesired side effects. As a result, significant effort has been put into identifying compounds that are selective for cancerous over noncancerous cell types. Our laboratory has recently developed a series of near-infrared (NIR) fluorophores containing a phosphinate functionality at the bridging position of a xanthene scaffold, termed Nebraska Red (NR) fluorophores. Herein, we report the selective cytotoxicity of one NR derivative, NR , against HeLa (cervical cancer) cells versus NIH-3T3 (noncancerous fibroblast) cells. Mechanistic studies based on the NIR fluorescence signal of NR showed distinct subcellular localization in HeLa (mitochondrial) versus NIH-3T3 (lysosomal) that resulted from the elevated mitochondrial potential in HeLa cells. This study provides a new, NIR scaffold for the further development of reagents for targeted cancer therapy.

摘要

化疗药物通常会对非癌细胞类型产生非靶向细胞毒性,导致不良的副作用。因此,人们已经投入大量精力来寻找对癌细胞具有选择性的化合物,而不是非癌细胞。我们实验室最近开发了一系列近红外(NIR)荧光染料,它们在香豆素支架的桥接位置含有膦酸酯官能团,称为内布拉斯加红(NR)荧光染料。在此,我们报告了 NR 的一种衍生物 NR 对 HeLa(宫颈癌)细胞与 NIH-3T3(非癌细胞成纤维细胞)的选择性细胞毒性。基于 NR 的近红外荧光信号的机制研究表明,它在 HeLa(线粒体)与 NIH-3T3(溶酶体)中的亚细胞定位不同,这是由于 HeLa 细胞中线粒体的电势升高所致。这项研究为进一步开发用于靶向癌症治疗的试剂提供了一个新的近红外支架。

相似文献

1
A Phosphinate-Containing Fluorophore Capable of Selectively Inducing Apoptosis in Cancer Cells.
Chembiochem. 2019 Jul 1;20(13):1712-1716. doi: 10.1002/cbic.201800811. Epub 2019 May 3.
2
Imaging GPCR internalization using near-infrared Nebraska red-based reagents.
Org Biomol Chem. 2020 Apr 1;18(13):2459-2467. doi: 10.1039/d0ob00043d.
3
Nebraska Red: a phosphinate-based near-infrared fluorophore scaffold for chemical biology applications.
Chem Commun (Camb). 2016 Oct 11;52(83):12290-12293. doi: 10.1039/c6cc05717a.
4
Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics.
Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14225-9. doi: 10.1002/anie.201408897. Epub 2014 Oct 15.
8
BODIPY based red emitters: Synthesis, computational and biological studies.
Bioorg Chem. 2021 Jan;106:104467. doi: 10.1016/j.bioorg.2020.104467. Epub 2020 Nov 10.
9
Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug lamellarin D.
Cancer Res. 2006 Mar 15;66(6):3177-87. doi: 10.1158/0008-5472.CAN-05-1929.

引用本文的文献

2
4
Experimentally Calibrated Computational Prediction Enables Accurate Fine-Tuning of Near-Infrared Rhodamines for Multiplexing.
Chemistry. 2023 Feb 1;29(7):e202202861. doi: 10.1002/chem.202202861. Epub 2022 Dec 12.
6
Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter.
J Am Chem Soc. 2021 Feb 10;143(5):2304-2314. doi: 10.1021/jacs.0c11382. Epub 2021 Jan 27.
7
A general method to optimize and functionalize red-shifted rhodamine dyes.
Nat Methods. 2020 Aug;17(8):815-821. doi: 10.1038/s41592-020-0909-6. Epub 2020 Jul 27.
8
Imaging GPCR internalization using near-infrared Nebraska red-based reagents.
Org Biomol Chem. 2020 Apr 1;18(13):2459-2467. doi: 10.1039/d0ob00043d.

本文引用的文献

1
Harnessing Cyanine Reactivity for Optical Imaging and Drug Delivery.
Acc Chem Res. 2018 Dec 18;51(12):3226-3235. doi: 10.1021/acs.accounts.8b00384. Epub 2018 Nov 12.
3
Bridge-Caging Strategy in Phosphorus-Substituted Rhodamine for Modular Development of Near-Infrared Fluorescent Probes.
Chemistry. 2018 Sep 25;24(54):14506-14512. doi: 10.1002/chem.201802875. Epub 2018 Aug 29.
4
Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging.
Chem Sci. 2018 Apr 24;9(19):4370-4380. doi: 10.1039/c8sc01153b. eCollection 2018 May 21.
6
A systematic analysis of FDA-approved anticancer drugs.
BMC Syst Biol. 2017 Oct 3;11(Suppl 5):87. doi: 10.1186/s12918-017-0464-7.
7
Flavylium Polymethine Fluorophores for Near- and Shortwave Infrared Imaging.
Angew Chem Int Ed Engl. 2017 Oct 9;56(42):13126-13129. doi: 10.1002/anie.201706974. Epub 2017 Sep 14.
8
Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications.
Chem Rev. 2017 Aug 9;117(15):10043-10120. doi: 10.1021/acs.chemrev.7b00042. Epub 2017 Jun 27.
9
Tissue-specific tumorigenesis: context matters.
Nat Rev Cancer. 2017 Apr;17(4):239-253. doi: 10.1038/nrc.2017.5. Epub 2017 Mar 3.
10
A comprehensive map of molecular drug targets.
Nat Rev Drug Discov. 2017 Jan;16(1):19-34. doi: 10.1038/nrd.2016.230. Epub 2016 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验