Division of Solid State Physics and NanoLund, Lund University, Lund, 221 00, Sweden.
Navan Technologies Inc., 733 Industrial Rd, San Carlos, CA, United States.
Small. 2021 Feb;17(7):e2006421. doi: 10.1002/smll.202006421. Epub 2021 Jan 27.
Due to their stable fluorescence, biocompatibility, and amenability to functionalization, fluorescent nanodiamonds (FND) are promising materials for long term cell labeling and tracking. However, transporting them to the cytosol remains a major challenge, due to low internalization efficiencies and endosomal entrapment. Here, nanostraws in combination with low voltage electroporation pulses are used to achieve direct delivery of FND to the cytosol. The nanostraw delivery leads to efficient and rapid FND transport into cells compared to when incubating cells in a FND-containing medium. Moreover, whereas all internalized FND delivered by incubation end up in lysosomes, a significantly larger proportion of nanostraw-injected FND are in the cytosol, which opens up for using FND as cellular probes. Furthermore, in order to answer the long-standing question in the field of nano-biology regarding the state of the cell membrane on hollow nanostructures, live cell stimulated emission depletion (STED) microscopy is performed to image directly the state of the membrane on nanostraws. The time-lapse STED images reveal that the cell membrane opens entirely on top of nanostraws upon application of gentle electrical pulses, which supports the hypothesis that many FND are delivered directly to the cytosol, avoiding endocytosis and lysosomal entrapment.
由于荧光纳米金刚石(FND)具有稳定的荧光、良好的生物相容性和易于功能化等特点,因此它们是长期细胞标记和示踪的有前途的材料。然而,由于内化效率低和内体捕获,将它们运输到细胞质仍然是一个主要挑战。在这里,纳米棒与低电压电穿孔脉冲结合使用,以实现 FND 向细胞质的直接递送。与在含有 FND 的培养基中孵育细胞相比,纳米棒递送导致 FND 更有效地快速进入细胞。此外,虽然通过孵育而内化的所有 FND 最终都在内溶酶体中,但通过纳米棒注入的 FND 中有很大一部分位于细胞质中,这为将 FND 用作细胞探针开辟了道路。此外,为了回答纳米生物学领域中长期存在的关于中空纳米结构细胞膜状态的问题,进行了活细胞受激发射损耗(STED)显微镜成像,以直接观察纳米棒上细胞膜的状态。延时 STED 图像显示,在施加温和的电脉冲时,细胞膜在纳米棒的顶部完全打开,这支持了许多 FND 被直接递送到细胞质中,从而避免了内吞作用和溶酶体捕获的假设。