Suppr超能文献

磁性可变形支架的生物打印

Bioprinting of Magnetically Deformable Scaffolds.

作者信息

Spangenberg Janina, Kilian David, Czichy Charis, Ahlfeld Tilman, Lode Anja, Günther Stefan, Odenbach Stefan, Gelinsky Michael

机构信息

Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.

Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany.

出版信息

ACS Biomater Sci Eng. 2021 Feb 8;7(2):648-662. doi: 10.1021/acsbiomaterials.0c01371. Epub 2021 Jan 28.

Abstract

Mechanical stimulation of cells embedded in scaffolds is known to increase the cellular performance toward osteogenic or chondrogenic differentiation and tissue development. Three-dimensional bioplotting of magnetically deformable scaffolds enables the spatially defined distribution of magnetically inducible scaffold regions. In this study, a magnetic bioink based on alginate (alg, 3%) and methylcellulose (MC, 9%) with incorporated magnetite microparticles (25% w/w) was developed and characterized. The size and shape of particles were monitored scanning electron microscopy and X-ray micro-computed tomography. Shear-thinning properties of the algMC ink were maintained after the addition of different concentrations of magnetite microparticles to the ink. Its viscosity proportionally increased with the added amount of magnetite, and so did the level of saturation magnetization as determined vibrating sample magnetometry. The printability and shape fidelity of various shapes were evaluated, so that the final composition of algMC + 25% w/w magnetite was chosen. With application of this ink, cytocompatibility was proven in indirect cell culture and bioplotting experiments using a human mesenchymal stem cell line. Toward the deformation of cell-laden scaffolds to support cell differentiation in the future, radiography allowed the real-time monitoring of magnetically induced deformation of scaffolds of different pore architectures and scaffold orientations inside the magnetic field. Varying the strand distance and scaffold design will allow fine-tuning the degree of deformation in stimulatory experiments.

摘要

已知对嵌入支架中的细胞进行机械刺激可提高细胞向成骨或软骨分化以及组织发育的性能。对可磁变形支架进行三维生物打印能够实现可磁诱导支架区域的空间定义分布。在本研究中,开发并表征了一种基于藻酸盐(alg,3%)和甲基纤维素(MC,9%)并掺入磁铁矿微粒(25% w/w)的磁性生物墨水。通过扫描电子显微镜和X射线微计算机断层扫描监测颗粒的大小和形状。在向藻酸盐-甲基纤维素墨水中添加不同浓度的磁铁矿微粒后,该墨水的剪切变稀特性得以保持。其粘度随磁铁矿添加量成比例增加,通过振动样品磁强计测定的饱和磁化强度水平也如此。评估了各种形状的可打印性和形状保真度,从而选择了藻酸盐-甲基纤维素+25% w/w磁铁矿的最终成分。使用这种墨水,在使用人骨髓间充质干细胞系的间接细胞培养和生物打印实验中证明了细胞相容性。为了未来支持细胞分化对载细胞支架进行变形,射线照相术能够实时监测磁场中不同孔隙结构和支架取向的支架的磁诱导变形。改变股线距离和支架设计将能够在刺激实验中微调变形程度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验