Suppr超能文献

3D 打印具有定向微通道的水凝胶以引导神经干细胞迁移。

3D Printed Hydrogels with Aligned Microchannels to Guide Neural Stem Cell Migration.

机构信息

Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.

Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.

出版信息

ACS Biomater Sci Eng. 2021 Feb 8;7(2):690-700. doi: 10.1021/acsbiomaterials.0c01619. Epub 2021 Jan 28.

Abstract

Following traumatic or ischemic brain injury, rapid cell death and extracellular matrix degradation lead to the formation of a cavity at the brain lesion site, which is responsible for prolonged neurological deficits and permanent disability. Transplantation of neural stem/progenitor cells (NSCs) represents a promising strategy for reconstructing the lesion cavity and promoting tissue regeneration. In particular, the promotion of neuronal migration, organization, and integration of transplanted NSCs is critical to the success of stem cell-based therapy. This is particularly important for the cerebral cortex, the most common area involved in brain injuries, because the highly organized structure of the cerebral cortex is essential to its function. Biomaterials-based strategies show some promise for conditioning the lesion site microenvironment to support transplanted stem cells, but the progress in demonstrating organized cell engraftment and integration into the brain is very limited. An effective approach to sufficiently address these challenges has not yet been developed. Here, we have implemented a digital light-processing-based 3D printer and printed hydrogel scaffolds with a designed shape, uniaxially aligned microchannels, and tunable mechanical properties. We demonstrated the capacity to achieve high shape precision to the lesion site with brain tissue-matching mechanical properties. We also established spatial control of bioactive molecule distribution within 3D printed hydrogel scaffolds. These printed hydrogel scaffolds have shown high neuro-compatibility with aligned neuronal outgrowth along with the microchannels. This study will provide a biomaterial-based approach that can serve as a protective and guidance vehicle for transplanted NSC organization and integration for brain tissue regeneration after injuries.

摘要

在创伤性或缺血性脑损伤后,快速的细胞死亡和细胞外基质降解导致脑损伤部位形成空洞,这是导致长期神经功能缺损和永久性残疾的原因。神经干细胞/祖细胞(NSCs)的移植为重建损伤腔并促进组织再生提供了一种有前途的策略。特别是,促进移植的 NSCs 的神经元迁移、组织和整合对于基于干细胞的治疗的成功至关重要。这对于大脑皮层尤其重要,因为大脑皮层是最常见的脑损伤区域,其高度组织化的结构对其功能至关重要。基于生物材料的策略在调节损伤部位微环境以支持移植的干细胞方面显示出一些希望,但在证明有组织的细胞移植和整合到大脑中的进展非常有限。尚未开发出一种有效的方法来充分解决这些挑战。在这里,我们实施了一种基于数字光处理的 3D 打印机,并打印出具有设计形状、单轴对准微通道和可调节机械性能的水凝胶支架。我们证明了能够以与脑组织匹配的机械性能实现对损伤部位的高精度形状控制。我们还建立了 3D 打印水凝胶支架内生物活性分子分布的空间控制。这些打印的水凝胶支架具有很高的神经相容性,能够沿着微通道引导神经元的定向生长。这项研究将提供一种基于生物材料的方法,可以作为一种保护和引导载体,用于组织和整合移植的 NSCs,以促进损伤后脑组织的再生。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验