Suppr超能文献

正电子发射断层扫描/计算机断层扫描中的放射组学:当前现状和基于人工智能的未来发展。

Radiomics in PET/CT: Current Status and Future AI-Based Evolutions.

机构信息

LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France.

LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France; Nuclear Medicine Department, CHU Milétrie, Poitiers, France.

出版信息

Semin Nucl Med. 2021 Mar;51(2):126-133. doi: 10.1053/j.semnuclmed.2020.09.002. Epub 2020 Nov 1.

Abstract

This short review aims at providing the readers with an update on the current status, as well as future perspectives in the quickly evolving field of radiomics applied to the field of PET/CT imaging. Numerous pitfalls have been identified in study design, data acquisition, segmentation, features calculation and modeling by the radiomics community, and these are often the same issues across all image modalities and clinical applications, however some of these are specific to PET/CT (and SPECT/CT) imaging and therefore the present paper focuses on those. In most cases, recommendations and potential methodological solutions do exist and should therefore be followed to improve the overall quality and reproducibility of published studies. In terms of future evolutions, the techniques from the larger field of artificial intelligence (AI), including those relying on deep neural networks (also known as deep learning) have already shown impressive potential to provide solutions, especially in terms of automation, but also to maybe fully replace the tools the radiomics community has been using until now in order to build the usual radiomics workflow. Some important challenges remain to be addressed before the full impact of AI may be realized but overall the field has made striking advances over the last few years and it is expected advances will continue at a rapid pace.

摘要

这篇简短的综述旨在为读者提供有关当前现状以及放射组学在快速发展的领域中的未来展望的最新信息,该领域应用于 PET/CT 成像。放射组学领域在研究设计、数据采集、分割、特征计算和建模方面已经发现了许多陷阱,这些问题在所有成像方式和临床应用中都很常见,但其中一些问题是特定于 PET/CT(和 SPECT/CT)成像的,因此本文重点介绍了这些问题。在大多数情况下,确实存在建议和潜在的方法学解决方案,因此应该遵循这些建议,以提高已发表研究的整体质量和可重复性。就未来的发展而言,人工智能(AI)领域的技术,包括依赖于深度神经网络(也称为深度学习)的技术,已经显示出提供解决方案的巨大潜力,尤其是在自动化方面,但也可能完全取代放射组学社区迄今为止用于构建常规放射组学工作流程的工具。在人工智能的全面影响得以实现之前,仍有一些重要的挑战需要解决,但总的来说,该领域在过去几年中取得了显著的进展,预计进展将以快速的步伐继续。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验