Chee Siew Sand, Jawaid Mohammad, Alothman Othman Y, Fouad Hassan
Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia.
Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia.
Polymers (Basel). 2021 Jan 27;13(3):395. doi: 10.3390/polym13030395.
Current work aims to study the mechanical and dynamical mechanical properties of non-woven bamboo (B)/woven kenaf (K)/epoxy (E) hybrid composites filled with nanoclay. The nanoclay-filled BK/E hybrid composites were prepared by dispersing 1 wt.% nanoclay (organically-modified montmorillonite (MMT; OMMT), montmorillonite (MMT), and halloysite nanotube (HNT)) with high shear speed homogenizer followed by hand lay-up fabrication technique. The effect of adding nanoclay on the tensile, flexural, and impact properties of the hybrid nanocomposites were studied. Fractography of tensile-fractured sample of hybrid composites was studied by field emission scanning electron microscope. The dynamic mechanical analyzer was used to study the viscoelastic properties of the hybrid nanocomposites. BK/E-OMMT exhibit enhanced mechanical properties compared to the other hybrid nanocomposites, with tensile, flexural, and impact strength values of 55.82 MPa, 105 MPa, and 65.68 J/m, respectively. Statistical analysis and grouping information were performed by one-way ANOVA (analysis of variance) and Tukey method, and it corroborates that the mechanical properties of the nanoclay-filled hybrid nanocomposites are statistically significant. The storage modulus of the hybrid nanocomposites was improved by 98.4%, 41.5%, and 21.7% with the addition of OMMT, MMT, and HNT, respectively. Morphology of the tensile fracture BK/E-OMMT composites shows that lesser voids, microcracks and fibers pull out due to strong fiber-matrix adhesion compared to other hybrid composites. Hence, the OMMT-filled BK/E hybrid nanocomposites can be utilized for load-bearing structure applications, such as floor panels and seatbacks, whereby lightweight and high strength are the main requirements.
当前的工作旨在研究填充纳米黏土的非织造竹纤维(B)/织造红麻纤维(K)/环氧树脂(E)混杂复合材料的力学性能和动态力学性能。通过使用高剪切速度均质器分散1 wt.%的纳米黏土(有机改性蒙脱土(MMT;OMMT)、蒙脱土(MMT)和埃洛石纳米管(HNT)),随后采用手工铺层制造技术,制备了填充纳米黏土的BK/E混杂复合材料。研究了添加纳米黏土对混杂纳米复合材料拉伸、弯曲和冲击性能的影响。通过场发射扫描电子显微镜研究了混杂复合材料拉伸断裂样品的断口形貌。使用动态力学分析仪研究了混杂纳米复合材料的粘弹性性能。与其他混杂纳米复合材料相比,BK/E-OMMT表现出增强的力学性能,其拉伸强度、弯曲强度和冲击强度值分别为55.82 MPa、105 MPa和65.68 J/m。通过单因素方差分析(ANOVA)和Tukey方法进行了统计分析和分组信息,结果证实填充纳米黏土的混杂纳米复合材料的力学性能具有统计学意义。添加OMMT、MMT和HNT后,混杂纳米复合材料的储能模量分别提高了98.4%、41.5%和21.7%。拉伸断裂的BK/E-OMMT复合材料的形貌表明,与其他混杂复合材料相比,由于纤维与基体之间的强粘附力,其孔隙、微裂纹和纤维拔出较少。因此,填充OMMT的BK/E混杂纳米复合材料可用于承重结构应用,如地板和座椅靠背,这些应用主要要求轻质和高强度。