Suppr超能文献

快速质谱搜索和无靶向代谢组学数据聚类。

Fast mass spectrometry search and clustering of untargeted metabolomics data.

机构信息

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.

Chemia Biosciences Inc., Pittsburgh, PA, USA.

出版信息

Nat Biotechnol. 2024 Nov;42(11):1672-1677. doi: 10.1038/s41587-023-01985-4. Epub 2024 Jan 2.

Abstract

The throughput of mass spectrometers and the amount of publicly available metabolomics data are growing rapidly, but analysis tools such as molecular networking and Mass Spectrometry Search Tool do not scale to searching and clustering billions of mass spectral data in metabolomics repositories. To address this limitation, we designed MASST+ and Networking+, which can process datasets that are up to three orders of magnitude larger than those processed by state-of-the-art tools.

摘要

质谱仪的通量和可用的代谢组学数据量正在迅速增长,但分子网络和质谱搜索工具等分析工具无法扩展到在代谢组学存储库中搜索和聚类数十亿个质谱数据。为了解决这一限制,我们设计了 MASST+ 和 Networking+,它们可以处理比最先进工具处理的数据大三个数量级的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验