Suppr超能文献

慢性阻塞性肺疾病中的人工智能:研究一种复杂疾病的新途径

Artificial Intelligence in COPD: New Venues to Study a Complex Disease.

作者信息

Estépar Raúl San José

机构信息

Applied Chest Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Barc Respir Netw Rev. 2020 May-Dec;6(2):144-160. doi: 10.23866/BRNRev:2019-0014.

Abstract

Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease that can benefit from novel approaches to understanding its evolution and divergent trajectories. Artificial intelligence (AI) has revolutionized how we can use clinical, imaging, and molecular data to understand and model complex systems. AI has shown impressive results in areas related to automated clinical decision making, radiological interpretation and prognostication. The unique nature of COPD and the accessibility to well-phenotyped populations result in an ideal scenario for AI development. This review provides an introduction to AI and deep learning and presents some recent successes in applying AI in COPD. Finally, we will discuss some of the opportunities, challenges, and limitations for AI applications in the context of COPD.

摘要

慢性阻塞性肺疾病(COPD)是一种复杂的异质性疾病,采用新方法来理解其演变和不同病程可能会带来益处。人工智能(AI)已经彻底改变了我们利用临床、影像和分子数据来理解复杂系统并建立模型的方式。在与自动化临床决策、放射学解读及预后预测相关的领域,人工智能已展现出令人瞩目的成果。COPD的独特性质以及对表型良好人群数据的可获取性,为人工智能的发展创造了理想条件。本综述介绍了人工智能和深度学习,并展示了近期在COPD中应用人工智能所取得的一些成功。最后,我们将讨论在COPD背景下人工智能应用的一些机遇、挑战和局限性。

相似文献

5
Artificial intelligence and machine learning in respiratory medicine.人工智能和机器学习在呼吸医学中的应用。
Expert Rev Respir Med. 2020 Jun;14(6):559-564. doi: 10.1080/17476348.2020.1743181. Epub 2020 Mar 17.
6
The Role of Artificial Intelligence in Echocardiography: A Clinical Update.人工智能在超声心动图中的作用:临床最新进展
Curr Cardiol Rep. 2023 Dec;25(12):1897-1907. doi: 10.1007/s11886-023-02005-2. Epub 2023 Dec 13.
9
Review of Artificial Intelligence Techniques in Chronic Obstructive Lung Disease.慢性阻塞性肺疾病中的人工智能技术综述
IEEE J Biomed Health Inform. 2022 May;26(5):2331-2338. doi: 10.1109/JBHI.2021.3135838. Epub 2022 May 5.

引用本文的文献

本文引用的文献

1
CT Image Enhancement for Feature Detection and Localization.用于特征检测与定位的CT图像增强
Med Image Comput Comput Assist Interv. 2017 Sep;10434:224-232. doi: 10.1007/978-3-319-66185-8_26. Epub 2017 Sep 4.
6
Bronchial Cartilage Assessment with Model-Based GAN Regressor.基于模型的生成对抗网络回归器的支气管软骨评估
Med Image Comput Comput Assist Interv. 2019 Oct;11769:357-365. doi: 10.1007/978-3-030-32226-7_40. Epub 2019 Oct 10.
7
A SR-NET 3D-TO-2D ARCHITECTURE FOR PARASEPTAL EMPHYSEMA SEGMENTATION.一种用于肺间隔旁肺气肿分割的SR-NET 3D到2D架构。
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:303-306. doi: 10.1109/isbi.2019.8759184. Epub 2019 Jul 11.
9
EMPHYSEMA CLASSIFICATION USING A MULTI-VIEW CONVOLUTIONAL NETWORK.基于多视图卷积网络的肺气肿分类
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:519-522. doi: 10.1109/isbi.2018.8363629. Epub 2018 May 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验