Suppr超能文献

医学影像数据集的性别失衡会导致计算机辅助诊断的分类器产生偏差。

Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis.

机构信息

Research Institute for Signals, Systems and Computational Intelligence sinc(i), Universidad Nacional del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Santa Fe CP3000, Argentina.

Instituto de Matemática Aplicada del Litoral, Universidad Nacional del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe CP3000, Argentina.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12592-12594. doi: 10.1073/pnas.1919012117. Epub 2020 May 26.

Abstract

Artificial intelligence (AI) systems for computer-aided diagnosis and image-based screening are being adopted worldwide by medical institutions. In such a context, generating fair and unbiased classifiers becomes of paramount importance. The research community of medical image computing is making great efforts in developing more accurate algorithms to assist medical doctors in the difficult task of disease diagnosis. However, little attention is paid to the way databases are collected and how this may influence the performance of AI systems. Our study sheds light on the importance of gender balance in medical imaging datasets used to train AI systems for computer-assisted diagnosis. We provide empirical evidence supported by a large-scale study, based on three deep neural network architectures and two well-known publicly available X-ray image datasets used to diagnose various thoracic diseases under different gender imbalance conditions. We found a consistent decrease in performance for underrepresented genders when a minimum balance is not fulfilled. This raises the alarm for national agencies in charge of regulating and approving computer-assisted diagnosis systems, which should include explicit gender balance and diversity recommendations. We also establish an open problem for the academic medical image computing community which needs to be addressed by novel algorithms endowed with robustness to gender imbalance.

摘要

人工智能(AI)系统在计算机辅助诊断和基于图像的筛查方面正被全球医疗机构所采用。在这种背景下,生成公平且无偏见的分类器变得至关重要。医学图像计算研究社区正在努力开发更精确的算法,以协助医生完成疾病诊断这一艰巨任务。然而,人们很少关注数据库的收集方式以及这可能如何影响 AI 系统的性能。我们的研究强调了在用于训练计算机辅助诊断 AI 系统的医学成像数据集中实现性别平衡的重要性。我们提供了基于三个深度神经网络架构和两个著名的公开 X 射线图像数据集的大规模研究的实证证据,这些数据集用于在不同性别失衡条件下诊断各种胸部疾病。我们发现,当未满足最小平衡时,代表性不足的性别性能会一致下降。这为负责监管和批准计算机辅助诊断系统的国家机构敲响了警钟,这些系统应包括明确的性别平衡和多样性建议。我们还为医学图像计算学术界提出了一个开放性问题,需要通过具有对性别失衡鲁棒性的新型算法来解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd63/7293650/b172508b62f8/pnas.1919012117fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验