Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli 35620, Izmir, Turkey.
Department of Electrical and Electronics Engineering, Izmir University of Economics, Balcova 35330, Izmir, Turkey.
Int J Neural Syst. 2021 May;31(5):2150005. doi: 10.1142/S0129065721500052. Epub 2021 Jan 30.
Epilepsy is a neurological disease that is very common worldwide. Patient's electroencephalography (EEG) signals are frequently used for the detection of epileptic seizure segments. In this paper, a high-resolution time-frequency (TF) representation called Synchrosqueezing Transform (SST) is used to detect epileptic seizures. Two different EEG data sets, the IKCU data set we collected, and the publicly available CHB-MIT data set are analyzed to test the performance of the proposed model in seizure detection. The SST representations of seizure and nonseizure (pre-seizure or inter-seizure) EEG segments of epilepsy patients are calculated. Various features like higher-order joint TF (HOJ-TF) moments and gray-level co-occurrence matrix (GLCM)-based features are calculated using the SST representation. By using single and ensemble machine learning methods such as -Nearest Neighbor (NN), Logistic Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), Boosted Trees (BT), and Subspace NN (S-NN), EEG features are classified. The proposed SST-based approach achieved 95.1% ACC, 96.87% PRE, 95.54% REC values for the IKCU data set, and 95.13% ACC, 93.37% PRE, 90.30% REC values for the CHB-MIT data set in seizure detection. Results show that the proposed SST-based method utilizing novel TF features outperforms the short-time Fourier transform (STFT)-based approach, providing over 95% accuracy for most cases, and compares well with the existing methods.
癫痫是一种在全球范围内非常常见的神经系统疾病。患者的脑电图(EEG)信号常用于检测癫痫发作段。在本文中,使用一种称为同步挤压变换(SST)的高分辨率时频(TF)表示方法来检测癫痫发作。分析了两个不同的 EEG 数据集,即我们收集的 IKCU 数据集和公开的 CHB-MIT 数据集,以测试所提出模型在癫痫发作检测中的性能。计算了癫痫患者的癫痫发作和非癫痫发作(发作前或发作间)EEG 段的 SST 表示。使用 SST 表示计算各种特征,如高阶联合 TF(HOJ-TF)矩和灰度共生矩阵(GLCM)基于特征。通过使用单一和集成机器学习方法,如最近邻(NN)、逻辑回归(LR)、朴素贝叶斯(NB)、支持向量机(SVM)、Boosted Trees(BT)和子空间 NN(S-NN),对 EEG 特征进行分类。所提出的基于 SST 的方法在 IKCU 数据集上实现了 95.1%的 ACC、96.87%的 PRE 和 95.54%的 REC 值,在 CHB-MIT 数据集上实现了 95.13%的 ACC、93.37%的 PRE 和 90.30%的 REC 值,用于癫痫发作检测。结果表明,与基于短时傅里叶变换(STFT)的方法相比,利用新的 TF 特征的基于 SST 的方法性能更好,在大多数情况下提供超过 95%的准确率,并与现有方法相比表现良好。