Suppr超能文献

基于同步挤压变换和机器学习的癫痫脑电信号分类。

Classification of Epileptic EEG Signals Using Synchrosqueezing Transform and Machine Learning.

机构信息

Department of Biomedical Engineering, Izmir Katip Celebi University, Cigli 35620, Izmir, Turkey.

Department of Electrical and Electronics Engineering, Izmir University of Economics, Balcova 35330, Izmir, Turkey.

出版信息

Int J Neural Syst. 2021 May;31(5):2150005. doi: 10.1142/S0129065721500052. Epub 2021 Jan 30.

Abstract

Epilepsy is a neurological disease that is very common worldwide. Patient's electroencephalography (EEG) signals are frequently used for the detection of epileptic seizure segments. In this paper, a high-resolution time-frequency (TF) representation called Synchrosqueezing Transform (SST) is used to detect epileptic seizures. Two different EEG data sets, the IKCU data set we collected, and the publicly available CHB-MIT data set are analyzed to test the performance of the proposed model in seizure detection. The SST representations of seizure and nonseizure (pre-seizure or inter-seizure) EEG segments of epilepsy patients are calculated. Various features like higher-order joint TF (HOJ-TF) moments and gray-level co-occurrence matrix (GLCM)-based features are calculated using the SST representation. By using single and ensemble machine learning methods such as -Nearest Neighbor (NN), Logistic Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), Boosted Trees (BT), and Subspace NN (S-NN), EEG features are classified. The proposed SST-based approach achieved 95.1% ACC, 96.87% PRE, 95.54% REC values for the IKCU data set, and 95.13% ACC, 93.37% PRE, 90.30% REC values for the CHB-MIT data set in seizure detection. Results show that the proposed SST-based method utilizing novel TF features outperforms the short-time Fourier transform (STFT)-based approach, providing over 95% accuracy for most cases, and compares well with the existing methods.

摘要

癫痫是一种在全球范围内非常常见的神经系统疾病。患者的脑电图(EEG)信号常用于检测癫痫发作段。在本文中,使用一种称为同步挤压变换(SST)的高分辨率时频(TF)表示方法来检测癫痫发作。分析了两个不同的 EEG 数据集,即我们收集的 IKCU 数据集和公开的 CHB-MIT 数据集,以测试所提出模型在癫痫发作检测中的性能。计算了癫痫患者的癫痫发作和非癫痫发作(发作前或发作间)EEG 段的 SST 表示。使用 SST 表示计算各种特征,如高阶联合 TF(HOJ-TF)矩和灰度共生矩阵(GLCM)基于特征。通过使用单一和集成机器学习方法,如最近邻(NN)、逻辑回归(LR)、朴素贝叶斯(NB)、支持向量机(SVM)、Boosted Trees(BT)和子空间 NN(S-NN),对 EEG 特征进行分类。所提出的基于 SST 的方法在 IKCU 数据集上实现了 95.1%的 ACC、96.87%的 PRE 和 95.54%的 REC 值,在 CHB-MIT 数据集上实现了 95.13%的 ACC、93.37%的 PRE 和 90.30%的 REC 值,用于癫痫发作检测。结果表明,与基于短时傅里叶变换(STFT)的方法相比,利用新的 TF 特征的基于 SST 的方法性能更好,在大多数情况下提供超过 95%的准确率,并与现有方法相比表现良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验