Suppr超能文献

基于群体的柔性隐马尔可夫模型和深度学习的稀疏测量用于脑电图分类

Sparse measures with swarm-based pliable hidden Markov model and deep learning for EEG classification.

作者信息

Prabhakar Sunil Kumar, Ju Young-Gi, Rajaguru Harikumar, Won Dong-Ok

机构信息

Department of Artificial Intelligence Convergence, Hallym University, Chuncheon, South Korea.

Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam, India.

出版信息

Front Comput Neurosci. 2022 Nov 16;16:1016516. doi: 10.3389/fncom.2022.1016516. eCollection 2022.

Abstract

In comparison to other biomedical signals, electroencephalography (EEG) signals are quite complex in nature, so it requires a versatile model for feature extraction and classification. The structural information that prevails in the originally featured matrix is usually lost when dealing with standard feature extraction and conventional classification techniques. The main intention of this work is to propose a very novel and versatile approach for EEG signal modeling and classification. In this work, a sparse representation model along with the analysis of sparseness measures is done initially for the EEG signals and then a novel convergence of utilizing these sparse representation measures with Swarm Intelligence (SI) techniques based Hidden Markov Model (HMM) is utilized for the classification. The SI techniques utilized to compute the hidden states of the HMM are Particle Swarm Optimization (PSO), Differential Evolution (DE), Whale Optimization Algorithm (WOA), and Backtracking Search Algorithm (BSA), thereby making the HMM more pliable. Later, a deep learning methodology with the help of Convolutional Neural Network (CNN) was also developed with it and the results are compared to the standard pattern recognition classifiers. To validate the efficacy of the proposed methodology, a comprehensive experimental analysis is done over publicly available EEG datasets. The method is supported by strong statistical tests and theoretical analysis and results show that when sparse representation is implemented with deep learning, the highest classification accuracy of 98.94% is obtained and when sparse representation is implemented with SI-based HMM method, a high classification accuracy of 95.70% is obtained.

摘要

与其他生物医学信号相比,脑电图(EEG)信号本质上相当复杂,因此需要一种通用模型来进行特征提取和分类。在处理标准特征提取和传统分类技术时,原始特征矩阵中普遍存在的结构信息通常会丢失。这项工作的主要目的是提出一种非常新颖且通用的脑电图信号建模和分类方法。在这项工作中,首先对脑电图信号进行稀疏表示模型以及稀疏性度量分析,然后将这些稀疏表示度量与基于群体智能(SI)技术的隐马尔可夫模型(HMM)进行新颖的融合用于分类。用于计算HMM隐藏状态的SI技术包括粒子群优化(PSO)、差分进化(DE)、鲸鱼优化算法(WOA)和回溯搜索算法(BSA),从而使HMM更具灵活性。随后,还借助卷积神经网络(CNN)开发了一种深度学习方法,并将结果与标准模式识别分类器进行比较。为了验证所提出方法的有效性,对公开可用的脑电图数据集进行了全面的实验分析。该方法得到了强大的统计测试和理论分析的支持,结果表明,当稀疏表示与深度学习结合实施时,可获得高达98.94%的最高分类准确率;当稀疏表示与基于SI的HMM方法结合实施时,可获得95.70%的高分类准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c64e/9709410/ce1a154aaf43/fncom-16-1016516-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验