Department of Biology, The Johns Hopkins University;
J Vis Exp. 2021 Jan 13(167). doi: 10.3791/61563.
There has long been a crucial tradeoff between spatial and temporal resolution in imaging. Imaging beyond the diffraction limit of light has traditionally been restricted to be used only on fixed samples or live cells outside of tissue labeled with strong fluorescent signal. Current super-resolution live cell imaging techniques require the use of special fluorescence probes, high illumination, multiple image acquisitions with post-acquisition processing, or often a combination of these processes. These prerequisites significantly limit the biological samples and contexts that this technique can be applied to. Here we describe a method to perform super-resolution (~140 nm XY-resolution) time-lapse fluorescence live cell imaging in situ. This technique is also compatible with low fluorescent intensity, for example, EGFP or mCherry endogenously tagged at lowly expressed genes. As a proof-of-principle, we have used this method to visualize multiple subcellular structures in the Drosophila testis. During tissue preparation, both the cellular structure and tissue morphology are maintained within the dissected testis. Here, we use this technique to image microtubule dynamics, the interactions between microtubules and the nuclear membrane, as well as the attachment of microtubules to centromeres. This technique requires special procedures in sample preparation, sample mounting and immobilizing of specimens. Additionally, the specimens must be maintained for several hours after dissection without compromising cellular function and activity. While we have optimized the conditions for live super-resolution imaging specifically in Drosophila male germline stem cells (GSCs) and progenitor germ cells in dissected testis tissue, this technique is broadly applicable to a variety of different cell types. The ability to observe cells under their physiological conditions without sacrificing either spatial or temporal resolution will serve as an invaluable tool to researchers seeking to address crucial questions in cell biology.
长期以来,在成像中空间分辨率和时间分辨率之间存在着至关重要的权衡。传统上,超越光的衍射极限的成像仅限于用于固定样品或组织外标记有强荧光信号的活细胞。当前的超分辨率活细胞成像技术需要使用特殊的荧光探针、高照明、多次图像采集和采集后的后处理,或者通常需要这些过程的组合。这些前提条件极大地限制了该技术可以应用的生物样本和背景。在这里,我们描述了一种在原位进行超分辨率(~140nmXY 分辨率)时间 lapse 荧光活细胞成像的方法。该技术也与低荧光强度兼容,例如,在低表达基因中内源性标记的 EGFP 或 mCherry。作为原理验证,我们已经使用该方法可视化了果蝇睾丸中的多个亚细胞结构。在组织制备过程中,在解剖的睾丸中保持细胞结构和组织形态。在这里,我们使用该技术来观察微管动力学、微管与核膜之间的相互作用以及微管与着丝粒的连接。这种技术在样品制备、样品安装和标本固定方面需要特殊的程序。此外,在不损害细胞功能和活性的情况下,标本必须在解剖后维持数小时。虽然我们已经针对活体超分辨率成像在果蝇雄性生殖干细胞(GSCs)和解剖睾丸组织中的祖细胞生殖细胞中进行了条件优化,但该技术广泛适用于多种不同的细胞类型。在不牺牲空间或时间分辨率的情况下观察细胞的生理条件的能力将成为研究人员解决细胞生物学关键问题的宝贵工具。