Liu Wenjie, Liu Qiulan, Zhang Zhimin, Han Yubing, Kuang Cuifang, Xu Liang, Yang Hongqin, Liu Xu
Opt Express. 2019 Mar 4;27(5):7237-7248. doi: 10.1364/OE.27.007237.
Imaging and tracking three-dimensional (3D) nanoscale organizations and functions of live cells is essential for biological research but it remains challenging. Among different 3D super-resolution techniques, 3D structured illumination microscopy (SIM) has the intrinsic advantages for live-cell studies; it is based on wide-field imaging and does not require high light intensities or special fluorescent dyes to double 3D resolution. However, the 3D SIM system has developed relatively slowly, especially in live imaging. Here, we report a more flexible 3D SIM system based on two galvanometer sets conveniently controlling the structured illumination pattern's period and orientation, which is able to study dynamics of live whole cells with high speed. We demonstrate our microscope's capabilities with strong optical sectioning and lateral, axial, and volume temporal resolution of 104 nm, 320 nm and 4 s, respectively. We do this by imaging nanoparticle and microtubule organizations and mitochondria evolution. These characteristics enable our galvanometer-based 3D SIM system to broaden the accessible imaging content of SIM-family microscopes and further facilitate their applications in life sciences.
对活细胞的三维(3D)纳米级组织和功能进行成像和追踪对生物学研究至关重要,但仍具有挑战性。在不同的3D超分辨率技术中,3D结构光照明显微镜(SIM)在活细胞研究方面具有内在优势;它基于宽场成像,不需要高光强度或特殊荧光染料即可将3D分辨率提高一倍。然而,3D SIM系统发展相对缓慢,尤其是在实时成像方面。在此,我们报告了一种更灵活的3D SIM系统,该系统基于两组振镜,可方便地控制结构光照图案的周期和方向,能够高速研究活的完整细胞的动态。我们通过对纳米颗粒、微管组织和线粒体进化进行成像,展示了我们显微镜分别具有104 nm的强光学切片能力、104 nm的横向分辨率、320 nm的轴向分辨率和4 s的体积时间分辨率。这些特性使我们基于振镜的3D SIM系统能够拓宽SIM系列显微镜可获取的成像内容,并进一步促进其在生命科学中的应用。