School of Global Health, Faculty of Health, York University, 4700 Keele Street, Dahdaleh Building 5022C, Toronto, Ontario, M3J 1P3, Canada.
Global Strategy Lab, York University, 4700 Keele Street, Dahdaleh Building 5022C, Toronto, Ontario, M3J 1P3, Canada.
Popul Health Metr. 2021 Feb 1;19(1):4. doi: 10.1186/s12963-021-00246-3.
Smartphones have rapidly become an important marker of wealth in low- and middle-income countries, but international household surveys do not regularly gather data on smartphone ownership and these data are rarely used to calculate wealth indices.
We developed a cross-sectional survey module delivered to 3028 households in rural northwest Burkina Faso to measure the effects of this absence. Wealth indices were calculated using both principal components analysis (PCA) and polychoric PCA for a base model using only ownership of any cell phone, and a full model using data on smartphone ownership, the number of cell phones, and the purchase of mobile data. Four outcomes (household expenditure, education level, and prevalence of frailty and diabetes) were used to evaluate changes in the composition of wealth index quintiles using ordinary least squares and logistic regressions and Wald tests.
Households that own smartphones have higher monthly expenditures and own a greater quantity and quality of household assets. Expenditure and education levels are significantly higher at the fifth (richest) socioeconomic status (SES) quintile of full model wealth indices as compared to base models. Similarly, diabetes prevalence is significantly higher at the fifth SES quintile using PCA wealth index full models, but this is not observed for frailty prevalence, which is more prevalent among lower SES households. These effects are not present when using polychoric PCA, suggesting that this method provides additional robustness to missing asset data to measure underlying latent SES by proxy.
The lack of smartphone data can skew PCA-based wealth index performance in a low-income context for the top of the socioeconomic spectrum. While some PCA variants may be robust to the omission of smartphone ownership, eliciting smartphone ownership data in household surveys is likely to substantially improve the validity and utility of wealth estimates.
智能手机在中低收入国家迅速成为财富的重要标志,但国际家庭调查并未定期收集有关智能手机拥有情况的数据,这些数据也很少用于计算财富指数。
我们开发了一个横断面调查模块,在布基纳法索农村西北部的 3028 户家庭中进行了测量,以衡量这种缺失的影响。使用主成分分析(PCA)和多项式 PCA 为仅拥有任何手机的基本模型计算财富指数,并为使用智能手机拥有情况、手机数量和移动数据购买数据的完整模型计算财富指数。使用普通最小二乘法和逻辑回归以及 Wald 检验,使用四个结果(家庭支出、教育水平以及虚弱和糖尿病的患病率)来评估使用智能手机的财富指数五分位数构成的变化。
拥有智能手机的家庭每月支出更高,拥有更多和更高质量的家庭资产。与基本模型相比,完整模型财富指数的第五个(最富裕)社会经济地位(SES)五分位数的支出和教育水平明显更高。同样,使用 PCA 财富指数完整模型,糖尿病的患病率在第五个 SES 五分位数明显更高,但在虚弱的患病率方面并未观察到这一点,虚弱在 SES 较低的家庭中更为普遍。使用多项式 PCA 时,这些影响并不存在,这表明该方法通过代理提供了对缺失资产数据的额外稳健性,以衡量潜在的 SES。
在低收入背景下,缺乏智能手机数据可能会使基于 PCA 的财富指数在社会经济频谱的顶部表现不佳。虽然一些 PCA 变体可能对智能手机拥有情况的遗漏具有稳健性,但在家庭调查中获取智能手机拥有情况的数据可能会大大提高财富估计的有效性和实用性。