Hou Shuhua, Ji Wentao, Chen Jianjun, Teng Yunfei, Wen Liping, Jiang Lei
Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Angew Chem Int Ed Engl. 2021 Apr 26;60(18):9925-9930. doi: 10.1002/anie.202100205. Epub 2021 Mar 22.
Both high ionic conductivity and selectivity of a membrane are required for efficient salinity gradient energy conversion. An efficient method to improve energy conversion is to align ionic transport along the membrane thickness to address low ionic conductivity in traditional membranes used for energy harvesting. We fabricated a free-standing covalent organic framework membrane (TpPa-SO H) with excellent stability and mechanical properties. This membrane with one-dimensional nanochannels and high charge density demonstrated high ionic conductivity and selectivity. Its power density reached up to 5.9 W m by mixing artificial seawater and river water. Based on our results, we attribute the high energy conversion to the high ion conductivity through aligned one-dimensional nanochannels and high ion selectivity via the size of the nanochannel at ≈1 nm in the membrane. This study paves the way for designing covalent organic framework membranes for high salinity gradient energy conversion.
为了实现高效的盐度梯度能量转换,需要膜具有高离子电导率和选择性。一种提高能量转换效率的有效方法是使离子传输沿膜的厚度方向排列,以解决用于能量收集的传统膜中离子电导率低的问题。我们制备了一种具有出色稳定性和机械性能的独立式共价有机框架膜(TpPa-SO H)。这种具有一维纳米通道和高电荷密度的膜表现出高离子电导率和选择性。通过混合人工海水和河水,其功率密度达到了5.9 W m 。基于我们的研究结果,我们将高能量转换归因于通过排列的一维纳米通道实现的高离子电导率以及通过膜中约1 nm的纳米通道尺寸实现的高离子选择性。这项研究为设计用于高盐度梯度能量转换的共价有机框架膜铺平了道路。