Suppr超能文献

利用机器学习估计种族隔离对美国 COVID-19 死亡率的影响。

Using machine learning to estimate the effect of racial segregation on COVID-19 mortality in the United States.

机构信息

Department of Sociology, Columbia University, New York, NY 10027;

Data Science Institute, Columbia University, New York, NY 10027.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 16;118(7). doi: 10.1073/pnas.2015577118.

Abstract

This study examines the role that racial residential segregation has played in shaping the spread of COVID-19 in the United States as of September 30, 2020. The analysis focuses on the effects of racial residential segregation on mortality and infection rates for the overall population and on racial and ethnic mortality gaps. To account for potential confounding, I assemble a dataset that includes 50 county-level factors that are potentially related to residential segregation and COVID-19 infection and mortality rates. These factors are grouped into eight categories: demographics, density and potential for public interaction, social capital, health risk factors, capacity of the health care system, air pollution, employment in essential businesses, and political views. I use double-lasso regression, a machine learning method for model selection and inference, to select the most important controls in a statistically principled manner. Counties that are 1 SD above the racial segregation mean have experienced mortality and infection rates that are 8% and 5% higher than the mean. These differences represent an average of four additional deaths and 105 additional infections for each 100,000 residents in the county. The analysis of mortality gaps shows that, in counties that are 1 SD above the Black-White segregation mean, the Black mortality rate is 8% higher than the White mortality rate. Sensitivity analyses show that an unmeasured confounder that would overturn these findings is outside the range of plausible covariates.

摘要

本研究考察了截至 2020 年 9 月 30 日, 种族居住隔离在美国 COVID-19 传播中所起的作用。该分析侧重于种族居住隔离对总人口死亡率和感染率的影响,以及种族和族裔死亡率差距。为了考虑潜在的混杂因素,我整理了一个数据集,其中包括 50 个县一级的因素,这些因素可能与居住隔离和 COVID-19 感染和死亡率有关。这些因素分为八类:人口统计学、密度和公共互动潜力、社会资本、健康风险因素、医疗保健系统能力、空气污染、必要行业就业和政治观点。我使用双重套索回归(一种用于模型选择和推断的机器学习方法),以统计上有原则的方式选择最重要的控制因素。种族隔离程度高于平均值 1 个标准差的县的死亡率和感染率比平均值高 8%和 5%。这些差异代表每 10 万居民中额外的 4 例死亡和 105 例额外感染。对死亡率差距的分析表明,在种族隔离程度高于黑-白种族隔离平均值 1 个标准差的县,黑人死亡率比白人死亡率高 8%。敏感性分析表明,一个可能推翻这些发现的未被测量的混杂因素在合理的协变量范围内。

相似文献

引用本文的文献

本文引用的文献

3
COVID-19 and African Americans.新冠病毒与非裔美国人。
JAMA. 2020 May 19;323(19):1891-1892. doi: 10.1001/jama.2020.6548.
5
Death by Segregation: Does the Dimension of Racial Segregation Matter?因种族隔离而死亡:种族隔离的程度重要吗?
PLoS One. 2015 Sep 23;10(9):e0138489. doi: 10.1371/journal.pone.0138489. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验