Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany.
Viruses. 2022 Jul 2;14(7):1468. doi: 10.3390/v14071468.
Numerous prediction models of SARS-CoV-2 pandemic were proposed in the past. Unknown parameters of these models are often estimated based on observational data. However, lag in case-reporting, changing testing policy or incompleteness of data lead to biased estimates. Moreover, parametrization is time-dependent due to changing age-structures, emerging virus variants, non-pharmaceutical interventions, and vaccination programs. To cover these aspects, we propose a principled approach to parametrize a SIR-type epidemiologic model by embedding it as a hidden layer into an input-output non-linear dynamical system (IO-NLDS). Observable data are coupled to hidden states of the model by appropriate data models considering possible biases of the data. This includes data issues such as known delays or biases in reporting. We estimate model parameters including their time-dependence by a Bayesian knowledge synthesis process considering parameter ranges derived from external studies as prior information. We applied this approach on a specific SIR-type model and data of Germany and Saxony demonstrating good prediction performances. Our approach can estimate and compare the relative effectiveness of non-pharmaceutical interventions and provide scenarios of the future course of the epidemic under specified conditions. It can be translated to other data sets, i.e., other countries and other SIR-type models.
过去已经提出了许多关于 SARS-CoV-2 大流行的预测模型。这些模型的未知参数通常是基于观测数据进行估计的。然而,由于病例报告的延迟、检测策略的改变或数据的不完整,导致了有偏估计。此外,由于年龄结构的变化、新出现的病毒变体、非药物干预措施和疫苗接种计划,参数化也具有时间依赖性。为了涵盖这些方面,我们提出了一种原则性的方法,即将 SIR 型传染病模型嵌入到输入-输出非线性动力系统 (IO-NLDS) 中作为隐藏层来参数化。通过考虑数据可能存在的偏差的适当数据模型,将观测数据与模型的隐藏状态耦合起来。这包括已知的报告延迟或偏差等数据问题。我们通过考虑从外部研究中获得的参数范围作为先验信息的贝叶斯知识综合过程来估计模型参数及其时间依赖性。我们将该方法应用于德国和萨克森州的特定 SIR 型模型和数据,结果表明其具有良好的预测性能。我们的方法可以估计和比较非药物干预措施的相对有效性,并提供在特定条件下疫情未来发展的情景。它可以被翻译到其他数据集,即其他国家和其他 SIR 型模型。