Suppr超能文献

基于双导联心电图信号的一维卷积神经网络模型的端到端抑郁症识别

End-to-End Depression Recognition Based on a One-Dimensional Convolution Neural Network Model Using Two-Lead ECG Signal.

作者信息

Zang Xiaohan, Li Baimin, Zhao Lulu, Yan Dandan, Yang Licai

机构信息

School of Control Science and Engineering, Shandong University, Jinan, China.

Jinan Third People's Hospital, Jinan, China.

出版信息

J Med Biol Eng. 2022;42(2):225-233. doi: 10.1007/s40846-022-00687-7. Epub 2022 Feb 7.

Abstract

PURPOSE

Depression is a common mental illness worldwide and has become an important public health problem. The current clinical diagnosis of depression mainly relies on the doctor's experience and subjective diagnosis, which results in the low diagnostic efficiency and insufficient objectivity of diagnostic results. Therefore, establishing a physiological and psychological model for computer-aided diagnosis is an urgent task. In order to solve the above problems, this article uses a convolutional neural network (CNN) to identify depression based on electrocardiogram (ECG).

METHODS

Our method uses the raw ECG signal as the input of one-dimensional CNN, and uses the automatic feature processing layer of CNN to learn and distinguish signal features without additional feature extraction and feature selection steps. In order to obtain the optimal model, ECG segments of different durations (3 s, 4 s, 5 s and 6 s) and CNNs with different layers were used for comparison. In order to obtain modeling data, the resting ECG of 37 depression patients and 37 healthy controls were collected. In the proposed network, larger convolution kernels are used to better focus on overall changes. In addition, this article focuses on the inter-patient data classification standard, where the training and test sets come from different patient data.

RESULTS

Through comprehensive comparison, the 5 s ECG segment and 5-layer CNN are recommended in related applications. The proposed approach achieves high classification performance with accuracy of 93.96%, sensitivity of 89.43%, specificity of 98.49%, positive productivity of 98.34%.

CONCLUSION

The experimental results indicate that the end-to-end deep learning approach can identify depression from ECG signals, and possess high diagnostic performance. It also shows that ECG is a potential biomarker in the diagnosis of depression.

摘要

目的

抑郁症是全球常见的精神疾病,已成为重要的公共卫生问题。目前抑郁症的临床诊断主要依赖医生的经验和主观判断,导致诊断效率低下且诊断结果客观性不足。因此,建立用于计算机辅助诊断的生理心理模型是一项紧迫任务。为解决上述问题,本文采用卷积神经网络(CNN)基于心电图(ECG)识别抑郁症。

方法

我们的方法将原始ECG信号作为一维CNN的输入,利用CNN的自动特征处理层学习并区分信号特征,无需额外的特征提取和特征选择步骤。为获得最优模型,使用不同时长(3秒、4秒、5秒和6秒)的ECG片段以及不同层数的CNN进行比较。为获取建模数据,收集了37例抑郁症患者和37例健康对照的静息ECG。在所提出的网络中,使用更大的卷积核以更好地关注整体变化。此外,本文关注患者间数据分类标准,其中训练集和测试集来自不同患者的数据。

结果

通过综合比较,在相关应用中推荐使用5秒的ECG片段和5层的CNN。所提出的方法实现了高分类性能,准确率为93.96%,灵敏度为89.43%,特异性为98.49%,阳性预测值为98.34%。

结论

实验结果表明,端到端深度学习方法可从ECG信号中识别抑郁症,具有较高的诊断性能。这也表明ECG是抑郁症诊断中的一种潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d9c/8819200/a7b45dcd2cb2/40846_2022_687_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验