Suppr超能文献

脓毒症患者病历的数据分析与临床特征排名

Data analytics and clinical feature ranking of medical records of patients with sepsis.

作者信息

Chicco Davide, Oneto Luca

机构信息

Krembil Research Institute, Toronto, Ontario, Canada.

Università di Genova, Genoa, Italy.

出版信息

BioData Min. 2021 Feb 3;14(1):12. doi: 10.1186/s13040-021-00235-0.

Abstract

BACKGROUND

Sepsis is a life-threatening clinical condition that happens when the patient's body has an excessive reaction to an infection, and should be treated in one hour. Due to the urgency of sepsis, doctors and physicians often do not have enough time to perform laboratory tests and analyses to help them forecast the consequences of the sepsis episode. In this context, machine learning can provide a fast computational prediction of sepsis severity, patient survival, and sequential organ failure by just analyzing the electronic health records of the patients. Also, machine learning can be employed to understand which features in the medical records are more predictive of sepsis severity, of patient survival, and of sequential organ failure in a fast and non-invasive way.

DATASET AND METHODS

In this study, we analyzed a dataset of electronic health records of 364 patients collected between 2014 and 2016. The medical record of each patient has 29 clinical features, and includes a binary value for survival, a binary value for septic shock, and a numerical value for the sequential organ failure assessment (SOFA) score. We disjointly utilized each of these three factors as an independent target, and employed several machine learning methods to predict it (binary classifiers for survival and septic shock, and regression analysis for the SOFA score). Afterwards, we used a data mining approach to identify the most important dataset features in relation to each of the three targets separately, and compared these results with the results achieved through a standard biostatistics approach.

RESULTS AND CONCLUSIONS

Our results showed that machine learning can be employed efficiently to predict septic shock, SOFA score, and survival of patients diagnoses with sepsis, from their electronic health records data. And regarding clinical feature ranking, our results showed that Random Forests feature selection identified several unexpected symptoms and clinical components as relevant for septic shock, SOFA score, and survival. These discoveries can help doctors and physicians in understanding and predicting septic shock. We made the analyzed dataset and our developed software code publicly available online.

摘要

背景

脓毒症是一种危及生命的临床病症,发生在患者身体对感染产生过度反应时,应在一小时内进行治疗。由于脓毒症的紧迫性,医生往往没有足够的时间进行实验室检测和分析,以帮助他们预测脓毒症发作的后果。在这种情况下,机器学习可以通过分析患者的电子健康记录,快速计算预测脓毒症的严重程度、患者生存率和序贯器官衰竭情况。此外,机器学习还可用于快速、非侵入性地了解病历中的哪些特征对脓毒症严重程度、患者生存率和序贯器官衰竭更具预测性。

数据集与方法

在本研究中,我们分析了2014年至2016年期间收集的364例患者的电子健康记录数据集。每位患者的病历有29个临床特征,包括生存的二元值、感染性休克的二元值以及序贯器官衰竭评估(SOFA)评分的数值。我们分别将这三个因素中的每一个作为独立目标,并采用多种机器学习方法进行预测(生存和感染性休克的二元分类器,以及SOFA评分的回归分析)。之后,我们使用数据挖掘方法分别确定与这三个目标中每一个相关的最重要数据集特征,并将这些结果与通过标准生物统计学方法获得的结果进行比较。

结果与结论

我们的结果表明,机器学习可以有效地用于从患者的电子健康记录数据中预测脓毒症患者的感染性休克、SOFA评分和生存率。关于临床特征排名,我们的结果表明,随机森林特征选择确定了几个意想不到的症状和临床成分与感染性休克、SOFA评分和生存率相关。这些发现有助于医生理解和预测感染性休克。我们将分析的数据集和开发的软件代码在网上公开。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90da/7860202/e9be50b746a8/13040_2021_235_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验