Suppr超能文献

PhenoGMM:流式细胞术数据分析的高斯混合模型可量化微生物群落结构的变化。

PhenoGMM: Gaussian Mixture Modeling of Cytometry Data Quantifies Changes in Microbial Community Structure.

机构信息

KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium

Flanders Marine Institute (VLIZ), Ostend, Belgium.

出版信息

mSphere. 2021 Feb 3;6(1):e00530-20. doi: 10.1128/mSphere.00530-20.

Abstract

Microbial flow cytometry can rapidly characterize the status of microbial communities. Upon measurement, large amounts of quantitative single-cell data are generated, which need to be analyzed appropriately. Cytometric fingerprinting approaches are often used for this purpose. Traditional approaches either require a manual annotation of regions of interest, do not fully consider the multivariate characteristics of the data, or result in many community-describing variables. To address these shortcomings, we propose an automated model-based fingerprinting approach based on Gaussian mixture models, which we call PhenoGMM. The method successfully quantifies changes in microbial community structure based on flow cytometry data, which can be expressed in terms of cytometric diversity. We evaluate the performance of PhenoGMM using data sets from both synthetic and natural ecosystems and compare the method with a generic binning fingerprinting approach. PhenoGMM supports the rapid and quantitative screening of microbial community structure and dynamics. Microorganisms are vital components in various ecosystems on Earth. In order to investigate the microbial diversity, researchers have largely relied on the analysis of 16S rRNA gene sequences from DNA. Flow cytometry has been proposed as an alternative technology to characterize microbial community diversity and dynamics. The technology enables a fast measurement of optical properties of individual cells. So-called fingerprinting techniques are needed in order to describe microbial community diversity and dynamics based on flow cytometry data. In this work, we propose a more advanced fingerprinting strategy based on Gaussian mixture models. We evaluated our workflow on data sets from both synthetic and natural ecosystems, illustrating its general applicability for the analysis of microbial flow cytometry data. PhenoGMM supports a rapid and quantitative analysis of microbial community structure using flow cytometry.

摘要

微生物流式细胞术可以快速描述微生物群落的状态。在测量时,会生成大量定量的单细胞数据,需要对其进行适当的分析。通常使用细胞计量指纹分析方法来实现这一目的。传统的方法要么需要手动注释感兴趣的区域,要么没有充分考虑数据的多变量特征,要么会产生许多描述群落的变量。为了解决这些缺点,我们提出了一种基于高斯混合模型的自动模型化的指纹分析方法,我们称之为 PhenoGMM。该方法能够成功地根据流式细胞术数据量化微生物群落结构的变化,这些变化可以用细胞计量多样性来表示。我们使用来自合成和自然生态系统的数据集来评估 PhenoGMM 的性能,并将该方法与通用的分箱指纹分析方法进行比较。PhenoGMM 支持快速定量筛选微生物群落结构和动态。微生物是地球上各种生态系统的重要组成部分。为了研究微生物多样性,研究人员在很大程度上依赖于 DNA 中 16S rRNA 基因序列的分析。流式细胞术已被提出作为一种替代技术来描述微生物群落多样性和动态。该技术能够快速测量单个细胞的光学特性。需要所谓的指纹分析技术才能根据流式细胞术数据描述微生物群落多样性和动态。在这项工作中,我们提出了一种基于高斯混合模型的更先进的指纹分析策略。我们在来自合成和自然生态系统的数据集上评估了我们的工作流程,说明了它对微生物流式细胞术数据分析的普遍适用性。PhenoGMM 支持使用流式细胞术快速定量分析微生物群落结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf1f/7860985/b35a6e73146a/mSphere.00530-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验