Suppr超能文献

糖果产品中原态食品级二氧化钛和E 171的粒度分析:单颗粒电感耦合等离子体质谱筛选方法的实验室间测试及透射电子显微镜确认

Particle size analysis of pristine food-grade titanium dioxide and E 171 in confectionery products: Interlaboratory testing of a single-particle inductively coupled plasma mass spectrometry screening method and confirmation with transmission electron microscopy.

作者信息

Geiss Otmar, Bianchi Ivana, Senaldi Chiara, Bucher Guillaume, Verleysen Eveline, Waegeneers Nadia, Brassinne Frédéric, Mast Jan, Loeschner Katrin, Vidmar Janja, Aureli Federica, Cubadda Francesco, Raggi Andrea, Iacoponi Francesca, Peters Ruud, Undas Anna, Müller Alexandra, Meinhardt Ann-Katrin, Walz Elke, Gräf Volker, Barrero-Moreno Josefa

机构信息

European Commission, Joint Research Centre (JRC), Ispra, Italy.

Service Commun des Laboratoires (SCL), 3 Avenue Dr Albert Schweitzer, 33600, Pessac, France.

出版信息

Food Control. 2021 Feb;120:107550. doi: 10.1016/j.foodcont.2020.107550.

Abstract

Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed. Special emphasis was placed on the sample preparation procedure, crucial to reproducibly disperse the particles before analysis. The transferability of this method was tested in an interlaboratory comparison study among seven experienced European food control and food research laboratories equipped with various ICP-MS instruments and using different software packages. The assessed measurands included the particle mean diameter, the most frequent diameter, the percentage of particles (in number) with a diameter below 100 nm, the particles' number concentration and a number of cumulative particle size distribution parameters (D0, D10, D50, D99.5, D99.8 and D100). The evaluated method's performance characteristics were, the within-laboratory precision, expressed as the relative repeatability standard deviation (RSDr), and the between-laboratory precision, expressed as the relative reproducibility standard deviation (RSDR). Transmission electron microscopy (TEM) was used as a confirmatory technique and served as the basis for bias estimation. The optimisation of the sample preparation step showed that when this protocol was applied to the relatively simple sample food matrices used in this study, bath sonication turned out to be sufficient to reach the highest, achievable degree of dispersed constituent particles. For the pristine material, probe sonication was required. Repeatability and reproducibility were below 10% and 25% respectively for most measurands except for the lower (D0) and the upper (D100) bound of the particle size distribution and the particle number concentration. The broader distribution of the lower and the upper bounds could be attributed to instrument-specific settings/setups (e.g. the timing parameters, the transport efficiency, type of mass-spectrometer) and software-specific data treatment algorithms. Differences in the upper bound were identified as being due to the non-harmonised application of the upper counting limit. Reporting D99.5 or D99.8 instead of the effectively largest particle diameter (D100) excluded isolated large particles and considerably improved the reproducibility. The particle number-concentration was found to be influenced by small differences in the sample preparation procedure. The comparison of these results with those obtained using electron microscopy showed that the mean and median particle diameter was, in all cases, higher when using spICP-MS. The main reason for this was the higher size detection limit for spICP-MS plus the fact that some of the analysed particles remained agglomerated/aggregated after sonication. Single particle ICP-MS is a powerful screening technique, which in many cases provides sufficient evidence to confirm the need to label a food product as containing (engineered) titanium dioxide nanomaterial according to the current EU regulatory requirements. The overall positive outcome of the method performance evaluation and the current lack of alternative standardised procedures, would indicate this method as being a promising candidate for a full validation study.

摘要

二氧化钛是一种被欧盟批准用作食品添加剂E171的白色色素,在欧盟被用于一系列食品中。由于这些材料可能含有一部分尺寸低于100纳米的颗粒,且目前欧盟法规要求对食品成分进行特定标签以表明工程纳米材料的存在,因此现在需要标准化和经过验证的方法来对食品基质中的(纳米)颗粒进行适当的尺寸测定和定量分析。开发了一种用于测定糖衣糖果和原始食品级二氧化钛中二氧化钛颗粒尺寸分布和浓度的单颗粒电感耦合等离子体质谱(spICP-MS)筛选方法。特别强调了样品制备程序,这对于在分析前可重复地分散颗粒至关重要。该方法的可转移性在一项实验室间比较研究中进行了测试,该研究涉及七个经验丰富的欧洲食品控制和食品研究实验室,这些实验室配备了各种ICP-MS仪器并使用不同的软件包。评估的测量量包括颗粒平均直径、最常见直径、直径低于100纳米的颗粒(数量)百分比、颗粒数浓度以及一些累积粒度分布参数(D0、D10、D5O、D99.5、D99.8和D100)。评估方法的性能特征为实验室内部精密度,以相对重复性标准偏差(RSDr)表示,以及实验室间精密度,以相对再现性标准偏差(RSDR)表示。透射电子显微镜(TEM)用作确认技术,并作为偏差估计的基础。样品制备步骤的优化表明,当该方案应用于本研究中使用的相对简单的样品食品基质时,浴式超声处理足以达到最高的、可实现的成分颗粒分散程度。对于原始材料,则需要探针超声处理。除了粒度分布的下限(D0)和上限(D100)以及颗粒数浓度外,大多数测量量的重复性和再现性分别低于10%和25%。下限和上限的较宽分布可归因于仪器特定的设置/配置(例如定时参数、传输效率、质谱仪类型)和软件特定的数据处理算法。上限的差异被确定是由于上限计数限制的不统一应用。报告D99.5或D99.8而不是有效最大颗粒直径(D100)排除了孤立的大颗粒,并显著提高了再现性。发现颗粒数浓度受样品制备程序中的微小差异影响。将这些结果与使用电子显微镜获得的结果进行比较表明,在所有情况下,使用spICP-MS时颗粒的平均直径和中值直径都更高。主要原因是spICP-MS的尺寸检测限较高,以及一些分析颗粒在超声处理后仍保持团聚/聚集状态。单颗粒ICP-MS是一种强大的筛选技术,在许多情况下,它提供了充分的证据来确认根据当前欧盟监管要求,需要将一种食品标记为含有(工程)二氧化钛纳米材料。方法性能评估的总体积极结果以及目前缺乏替代的标准化程序,表明该方法有望成为全面验证研究的候选方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a80c/7730118/6e0754c5c74e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验