Suppr超能文献

基于潜在狄利克雷分配模型的世界贸易分析。

Latent Dirichlet allocation model for world trade analysis.

机构信息

DRIVEN, FSTM, University of Luxembourg, Esch Sur Alzette, Luxembourg.

Universidad de Buenos Aires, Facultad de Ciencias Económicas, Buenos Aires, Caba, Argentina.

出版信息

PLoS One. 2021 Feb 4;16(2):e0245393. doi: 10.1371/journal.pone.0245393. eCollection 2021.

Abstract

International trade is one of the classic areas of study in economics. Its empirical analysis is a complex problem, given the amount of products, countries and years. Nowadays, given the availability of data, the tools used for the analysis can be complemented and enriched with new methodologies and techniques that go beyond the traditional approach. This new possibility opens a research gap, as new, data-driven, ways of understanding international trade, can help our understanding of the underlying phenomena. The present paper shows the application of the Latent Dirichlet allocation model, a well known technique in the area of Natural Language Processing, to search for latent dimensions in the product space of international trade, and their distribution across countries over time. We apply this technique to a dataset of countries' exports of goods from 1962 to 2016. The results show that this technique can encode the main specialisation patterns of international trade. On the country-level analysis, the findings show the changes in the specialisation patterns of countries over time. As traditional international trade analysis demands expert knowledge on a multiplicity of indicators, the possibility of encoding multiple known phenomena under a unique indicator is a powerful complement for traditional tools, as it allows top-down data-driven studies.

摘要

国际贸易是经济学中经典的研究领域之一。考虑到产品、国家和年份的数量,其实证分析是一个复杂的问题。如今,鉴于数据的可用性,用于分析的工具可以通过新的方法和技术得到补充和丰富,这些方法和技术超越了传统方法。这种新的可能性开辟了一个研究空白,因为新的、基于数据的国际贸易理解方式可以帮助我们理解潜在的现象。本文展示了潜在狄利克雷分配模型的应用,该模型是自然语言处理领域的一项知名技术,用于在国际贸易的产品空间中搜索潜在的维度,并分析其随时间在各国的分布。我们将此技术应用于 1962 年至 2016 年各国货物出口的数据集。结果表明,该技术可以对国际贸易的主要专业化模式进行编码。在国家层面的分析中,研究结果显示了各国随着时间的推移专业化模式的变化。由于传统的国际贸易分析需要对多种指标有专业知识,因此在单一指标下对多个已知现象进行编码的可能性是对传统工具的有力补充,因为它允许自上而下的数据驱动研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4549/7861422/600cb76ea7a5/pone.0245393.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验