Suppr超能文献

基于 OCT 血管造影深度学习分析的糖尿病视网膜病变分类框架。

A Diabetic Retinopathy Classification Framework Based on Deep-Learning Analysis of OCT Angiography.

机构信息

Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.

Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.

出版信息

Transl Vis Sci Technol. 2022 Jul 8;11(7):10. doi: 10.1167/tvst.11.7.10.

Abstract

PURPOSE

Reliable classification of referable and vision threatening diabetic retinopathy (DR) is essential for patients with diabetes to prevent blindness. Optical coherence tomography (OCT) and its angiography (OCTA) have several advantages over fundus photographs. We evaluated a deep-learning-aided DR classification framework using volumetric OCT and OCTA.

METHODS

Four hundred fifty-six OCT and OCTA volumes were scanned from eyes of 50 healthy participants and 305 patients with diabetes. Retina specialists labeled the eyes as non-referable (nrDR), referable (rDR), or vision threatening DR (vtDR). Each eye underwent a 3 × 3-mm scan using a commercial 70 kHz spectral-domain OCT system. We developed a DR classification framework and trained it using volumetric OCT and OCTA to classify eyes into rDR and vtDR. For the scans identified as rDR or vtDR, 3D class activation maps were generated to highlight the subregions which were considered important by the framework for DR classification.

RESULTS

For rDR classification, the framework achieved a 0.96 ± 0.01 area under the receiver operating characteristic curve (AUC) and 0.83 ± 0.04 quadratic-weighted kappa. For vtDR classification, the framework achieved a 0.92 ± 0.02 AUC and 0.73 ± 0.04 quadratic-weighted kappa. In addition, the multiple DR classification (non-rDR, rDR but non-vtDR, or vtDR) achieved a 0.83 ± 0.03 quadratic-weighted kappa.

CONCLUSIONS

A deep learning framework only based on OCT and OCTA can provide specialist-level DR classification using only a single imaging modality.

TRANSLATIONAL RELEVANCE

The proposed framework can be used to develop clinically valuable automated DR diagnosis system because of the specialist-level performance showed in this study.

摘要

目的

对于糖尿病患者来说,可靠地对可转诊和威胁视力的糖尿病视网膜病变(DR)进行分类,对于预防失明至关重要。光学相干断层扫描(OCT)及其血管造影(OCTA)在许多方面优于眼底照片。我们评估了一种基于深度学习的 DR 分类框架,该框架使用容积 OCT 和 OCTA。

方法

从 50 名健康参与者和 305 名糖尿病患者的眼睛中扫描了 456 个 OCT 和 OCTA 容积。视网膜专家将眼睛标记为不可转诊(nrDR)、可转诊(rDR)或威胁视力的 DR(vtDR)。每只眼睛都使用商业的 70 kHz 频域 OCT 系统进行 3×3-mm 扫描。我们开发了一种 DR 分类框架,并使用容积 OCT 和 OCTA 对其进行训练,以将眼睛分为 rDR 和 vtDR。对于被确定为 rDR 或 vtDR 的扫描,生成 3D 类激活图,以突出框架认为对 DR 分类重要的子区域。

结果

对于 rDR 分类,该框架的受试者工作特征曲线下面积(AUC)为 0.96±0.01,二次加权kappa 为 0.83±0.04。对于 vtDR 分类,该框架的 AUC 为 0.92±0.02,二次加权 kappa 为 0.73±0.04。此外,多重 DR 分类(非 nrDR、rDR 但非 vtDR 或 vtDR)的二次加权 kappa 为 0.83±0.03。

结论

仅基于 OCT 和 OCTA 的深度学习框架可以仅使用单一成像模式提供专家级别的 DR 分类。

翻译

温伟强

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d30/9288155/79c4a05d16bb/tvst-11-7-10-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验