Suppr超能文献

无参考、无感知的异常检测图像质量评估。

No Reference, Opinion Unaware Image Quality Assessment by Anomaly Detection.

机构信息

Department of Computer Science, Systems and Communications, University of Milano-Bicocca, 20126 Milan, Italy.

lastminute.com Group, 6830 Chiasso, Switzerland.

出版信息

Sensors (Basel). 2021 Feb 2;21(3):994. doi: 10.3390/s21030994.

Abstract

We propose an anomaly detection based image quality assessment method which exploits the correlations between feature maps from a pre-trained Convolutional Neural Network (CNN). The proposed method encodes the intra-layer correlation through the Gram matrix and then estimates the quality score combining the average of the correlation and the output from an anomaly detection method. The latter evaluates the degree of abnormality of an image by computing a correlation similarity with respect to a dictionary of pristine images. The effectiveness of the method is tested on different benchmarking datasets (LIVE-itW, KONIQ, and SPAQ).

摘要

我们提出了一种基于异常检测的图像质量评估方法,该方法利用了预训练卷积神经网络(CNN)的特征图之间的相关性。所提出的方法通过 Gram 矩阵对层内相关性进行编码,然后通过计算与原始图像字典的相关性相似性来结合异常检测方法的输出估计质量分数。后者通过计算与原始图像字典的相关性相似性来评估图像的异常程度。该方法在不同的基准数据集(LIVE-itW、KONIQ 和 SPAQ)上进行了测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6765/7867270/9003cde7d581/sensors-21-00994-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验