Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, 832003, China.
Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
BMC Plant Biol. 2021 Feb 4;21(1):75. doi: 10.1186/s12870-021-02851-8.
Saussurea involucrata survives in extreme arctic conditions and is very cold-resistant. This species grows in rocky, mountainous areas with elevations of 2400-4100 m, which are snow-covered year-round and are subject to freezing temperatures. S. involucrata's ability to survive in an extreme low-temperature environment suggests that it has particularly high photosynthetic efficiency, providing a magnificent model, and rich gene pool, for the analysis of plant cold stress response. Fructose-1, 6-bisphosphate aldolase (FBA) is a key enzyme in the photosynthesis process and also mediates the conversion of fructose 1, 6-bisphosphate (FBP) into dihydroxyacetone phosphate (DHAP) and glycerol triphosphate (GAP) during glycolysis and gluconeogenesis. The molecular mechanisms underlying S. involucrata's cold tolerance are still unclear; therefore, our work aims to investigate the role of FBA in plant cold-stress response.
In this study, we identified a cold-responsive gene, SiFBA5, based on a preliminary low-temperature, genome-wide transcriptional profiling of S. involucrata. Expression analysis indicated that cold temperatures rapidly induced transcriptional expression of SiFBA5, suggesting that SiFBA5 participates in the initial stress response. Subcellular localization analysis revealed that SiFBA5 is localized to the chloroplast. Transgenic tomato plants that overexpressed SiFBA5 were generated using a CaMV 35S promoter. Phenotypic observation suggested that the transgenic plants displayed increased cold tolerance and photosynthetic efficiency in comparison with wild-type plants.
Cold stress has a detrimental impact on crop yield. Our results demonstrated that SiFBA5 positively regulates plant response to cold stress, which is of great significance for increasing crop yield under cold stress conditions.
雪莲生长在海拔 2400-4100 米的多石山地和高山带的岩石缝、石壁和石砾中,终年积雪,气候严寒。雪莲具有极强的抗寒特性,这表明它具有极高的光合作用效率,为研究植物抗寒胁迫响应提供了壮丽的模型和丰富的基因库。1,6-二磷酸果糖醛缩酶(FBA)是光合作用过程中的关键酶,也是糖酵解和糖异生过程中果糖 1,6-二磷酸(FBP)转化为 1,2-二羟丙酮磷酸(DHAP)和甘油三磷酸(GAP)的介质。雪莲耐冷的分子机制尚不清楚;因此,我们的工作旨在研究 FBA 在植物冷胁迫响应中的作用。
本研究基于初步的低温全基因组转录谱分析,从雪莲中鉴定出一个冷响应基因 SiFBA5。表达分析表明,低温迅速诱导 SiFBA5 的转录表达,表明 SiFBA5 参与了初始应激反应。亚细胞定位分析表明 SiFBA5 定位于叶绿体。使用 CaMV 35S 启动子生成了过表达 SiFBA5 的转基因番茄植物。表型观察表明,与野生型植物相比,转基因植物表现出增强的耐寒性和光合作用效率。
冷胁迫对作物产量有不利影响。我们的结果表明,SiFBA5 正向调节植物对冷胁迫的响应,这对于增加冷胁迫条件下作物的产量具有重要意义。