Wu Jingyi, Rao Zhixiang, Liu Xueting, Shen Yue, Fang Chun, Yuan Lixia, Li Zhen, Zhang Wuxing, Xie Xiaolin, Huang Yunhui
State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Adv Mater. 2021 Mar;33(12):e2007428. doi: 10.1002/adma.202007428. Epub 2021 Feb 4.
The short cycle life and safety concerns caused by uncontrollable dendrite growth have severely hindered the commercialization of lithium metal batteries. Here, a polycationic and hydrophobic polymer protective layer fabricated by a scalable tape-casting method is developed to enable air-stable, dendrite-free, and highly efficient Li metal anodes. The polymeric cations of poly(diallyl dimethyl ammonium) (PDDA) provide an electrostatic shielding effect that unifies Li flux at the surface of the Li anode and promotes a homogeneous Li plating, while the bis(trifluoromethanesulfonyl)imide (TFSI) anions bring hydrophobic characteristics and improve moisture stability. The accumulated TFSI anions by the polycationic film also facilitate the formation of a stable solid electrolyte interphase (SEI). Steady Li plating/stripping in the carbonate electrolyte can be achieved under a high areal capacity of 10 mAh cm for 700 h with Li utilization efficiency up to 51.6%. LiNi Mn Co O and LiFePO cells using the modified anode exhibit much improved electrochemical performance compared with the bare Li counterpart. Moreover, ultrasonic imaging shows no gas generation in the modified Li/LiFePO pouch cell. Mechanism investigation demonstrates the stable SEI and homogeneous Li deposition derived by the polycationic layer.
由不可控的枝晶生长所导致的短循环寿命和安全问题严重阻碍了锂金属电池的商业化进程。在此,通过一种可扩展的流延法制备了一种聚阳离子且疏水的聚合物保护层,以实现空气稳定、无枝晶且高效的锂金属负极。聚二烯丙基二甲基氯化铵(PDDA)的聚合物阳离子提供了一种静电屏蔽效应,使锂负极表面的锂通量均匀化,并促进均匀的锂沉积,而双(三氟甲磺酰)亚胺(TFSI)阴离子带来疏水特性并提高了湿度稳定性。聚阳离子膜积累的TFSI阴离子也有助于形成稳定的固体电解质界面(SEI)。在10 mAh cm²的高面积容量下,在碳酸盐电解质中可实现700小时的稳定锂沉积/剥离,锂利用率高达51.6%。与未修饰的锂负极相比,使用修饰后的负极的LiNiMnCoO和LiFePO电池表现出显著改善的电化学性能。此外,超声成像显示在修饰后的Li/LiFePO软包电池中没有气体产生。机理研究表明聚阳离子层可实现稳定的SEI和均匀的锂沉积。