Kwon Hyounghan, Zheng Tianzhe, Faraon Andrei
T. J. Watson Laboratory of Applied Physics and Kavli Nanoscience Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States.
Department of Electrical Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States.
Nano Lett. 2021 Apr 14;21(7):2817-2823. doi: 10.1021/acs.nanolett.0c04888. Epub 2021 Feb 5.
Planar all-dielectric photonic crystals or metasurfaces host various resonant eigenmodes including leaky guided mode resonances (GMR) and bound states in the continuum (BIC). Engineering these resonant modes can provide new opportunities for diverse applications. Particularly, electrical control of the resonances will boost development of the applications by making them tunable. Here, we experimentally demonstrate nano-electromechanical tuning of both the GMR and the quasi-BIC modes in the telecom wavelength range. With electrostatic forces induced by a few volts, the devices achieve spectral shifts over 5 nm, absolute intensity modulation over 40%, and modulation speed exceeding 10 kHz. We also show that the interference between two resonances enables the enhancement of the phase response when two modes are overlapped in spectrum. A phase shift of 144° is experimentally observed with a bias of 4 V. Our work suggests a direct route toward optical modulators through the engineering of GMRs and quasi-BIC resonances.
平面全介质光子晶体或超表面拥有各种共振本征模,包括泄漏导模共振(GMR)和连续统中的束缚态(BIC)。对这些共振模式进行工程设计可为各种应用提供新机遇。特别是,对共振进行电学控制将使应用变得可调谐,从而推动其发展。在此,我们通过实验证明了在电信波长范围内对GMR和准BIC模式进行纳米机电调谐。借助几伏电压产生的静电力,这些器件实现了超过5 nm的光谱位移、超过40%的绝对强度调制以及超过10 kHz的调制速度。我们还表明,当两个模式在光谱中重叠时,两个共振之间的干涉能够增强相位响应。在4 V偏置下,通过实验观察到了144°的相移。我们的工作为通过GMR和准BIC共振工程实现光调制器提供了一条直接途径。