Department of Radiology, Stony Brook University, Stony Brook, NY, United States of America.
Phys Med Biol. 2021 Jun 30;66(13). doi: 10.1088/1361-6560/abe3d0.
For the first time, we propose using amorphous selenium (-Se) as the photoconductive material for time-of-flight (TOF) detectors. Advantages of avalanche-mode-Se are having high fill factor, low excess noise due to unipolar photoconductive gain, band transport in extended states with the highest possible mobility, and negligible trapping. The major drawback of-Se is its poor single-photon time resolution and low carrier mobility due to shallow-traps, problems that must be circumvented for TOF applications. We propose a nanopattern multi-well-Se detector (MWSD) to enable both impact ionization avalanche gain and unipolar time-differential (UTD) charge sensing in one device. Our experimental results show that UTD charge sensing in avalanche-mode-Se improves time-resolution by nearly 4 orders-of-magnitude. In addition, we used Cramér-Rao lower bound analysis and Monte Carlo simulations to demonstrate the viability of our MWSD for low statistics photon imaging modalities such as PET despite it being a linear-mode device. Based on our results, our device may achieve 100 ps coincidence time resolution in TOF PET with a material that is low cost and uniformly scalable to large area.
我们首次提出使用非晶硒 (-Se) 作为飞行时间 (TOF) 探测器的光电导材料。雪崩模式-Se 的优点包括具有高填充因子、由于单极光电导增益导致的低过剩噪声、扩展态中的能带输运和可能的最高迁移率,以及可忽略的俘获。-Se 的主要缺点是由于浅陷阱导致的单光子时间分辨率差和载流子迁移率低,这些问题必须在 TOF 应用中加以解决。我们提出了一种纳米图案多阱硒探测器 (MWSD),以使单粒子雪崩增益和单极时间差分 (UTD) 电荷感应在一个器件中同时实现。我们的实验结果表明,雪崩模式-Se 中的 UTD 电荷感应将时间分辨率提高了近 4 个数量级。此外,我们使用克拉美罗下限分析和蒙特卡罗模拟来证明我们的 MWSD 对于低统计光子成像模式(如 PET)的可行性,尽管它是一种线性模式器件。基于我们的结果,我们的设备可能在具有低成本和均匀可扩展到大面积的材料的 TOF PET 中实现 100 ps 符合时间分辨率。