Ziarkash Abdul Waris, Joshi Siddarth Koduru, Stipčević Mario, Ursin Rupert
Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences Vienna, 1090, Vienna, Austria.
Ruder Boskovic Institute, Center of Excellence for Advanced Materials and Sensors and Division of Experimental Physics, Zagreb, 10000, Croatia.
Sci Rep. 2018 Mar 22;8(1):5076. doi: 10.1038/s41598-018-23398-z.
Single-photon avalanche diode (SPAD) detectors, have a great importance in fields like quantum key distribution, laser ranging, florescence microscopy, etc. Afterpulsing is a non-ideal behavior of SPADs that adversely affects any application that measures the number or timing of detection events. Several studies based on a few individual detectors, derived distinct mathematical models from semiconductor physics perspectives. With a consistent testing procedure and statistically large data sets, we show that different individual detectors - even if identical in type, make, brand, etc. - behave according to fundamentally different mathematical models. Thus, every detector must be characterized individually and it is wrong to draw universal conclusions about the physical meaning behind these models. We also report the presence of high-order afterpulses that are not accounted for in any of the standard models.
单光子雪崩二极管(SPAD)探测器在量子密钥分发、激光测距、荧光显微镜等领域具有重要意义。后脉冲是SPAD的一种非理想行为,会对任何测量检测事件数量或时间的应用产生不利影响。几项基于少数单个探测器的研究从半导体物理角度得出了不同的数学模型。通过一致的测试程序和统计上大量的数据集,我们表明,即使是类型、制造商、品牌等相同的不同单个探测器,其行为也遵循根本不同的数学模型。因此,每个探测器都必须单独进行表征,对这些模型背后的物理意义得出普遍结论是错误的。我们还报告了存在高阶后脉冲,而任何标准模型都未考虑到这一点。