Suppr超能文献

用于神经应用的聚苯胺-聚己内酯纤维:通过假掺杂提高导电性。

Polyaniline-polycaprolactone fibers for neural applications: Electroconductivity enhanced by pseudo-doping.

作者信息

Garrudo Fábio F F, Mikael Paiyz E, Rodrigues Carlos A V, Udangawa Ranodhi W, Paradiso Patrizia, Chapman Caitlyn A, Hoffman Pauline, Colaço Rogério, Cabral Joaquim M S, Morgado Jorge, Linhardt Robert J, Ferreira Frederico Castelo

机构信息

Department of Chemistry and Chemical Biology, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA; Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal; Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.

Department of Chemistry and Chemical Biology, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.

出版信息

Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111680. doi: 10.1016/j.msec.2020.111680. Epub 2020 Nov 4.

Abstract

Replenishing neurons in patients with neurodegenerative diseases is one of the ultimate therapies for these progressive, debilitating and fatal diseases. Electrical stimulation can improve neuron stem cell differentiation but requires a reliable nanopatterned electroconductive substrate. Potential candidate substrates are polycaprolactone (PCL) - polyaniline:camphorsulfonic acid (PANI:CSA) nanofibers, but their nanobiophysical properties need to be finetuned. The present study investigates the use of the pseudo-doping effect on the optimization of the electroconductivity of these polyaniline-based electrospun nanofibers. This was performed by developing a new solvent system that comprises a mixture of hexafluoropropanol (HFP) and trifluoroethanol (TFE). For the first time, an electroconductivity so high as 0.2 S cm was obtained for, obtained from a TFE:HFP 50/50 vol% solution, while maintaining fiber biocompatibility. The physicochemical mechanisms behind these changes were studied. The results suggest HFP promotes changes on PANI chains conformations through pseudo-doping, leading to the observed enhancement in electroconductivity. The consequences of such change in the nanofabrication of PCL-PANI fibers include an increase in fiber diameter (373 ± 172 nm), a decrease in contact angle (42 ± 3°) and a decrease in Young modulus (1.6 ± 0.5 MPa), making these fibers interesting candidates for neural tissue engineering. Electrical stimulation of differentiating neural stem cells was performed using AC electrical current. Positive effects on cell alignment and gene expression (DCX, MAP2) are observed. The novel optimized platform shows promising applications for (1) building in vitro platforms for drug screening, (2) interfaces for deep-brain electrodes; and (3) fully grown and functional neurons transplantation.

摘要

为神经退行性疾病患者补充神经元是治疗这些进展性、使人衰弱且致命疾病的最终疗法之一。电刺激可改善神经干细胞分化,但需要可靠的纳米图案化导电基质。潜在的候选基质是聚己内酯(PCL)-聚苯胺:樟脑磺酸(PANI:CSA)纳米纤维,但其纳米生物物理性质需要微调。本研究探讨了利用假掺杂效应优化这些基于聚苯胺的电纺纳米纤维的电导率。这是通过开发一种由六氟异丙醇(HFP)和三氟乙醇(TFE)混合而成的新溶剂体系来实现的。首次从TFE:HFP 50/50体积%的溶液中获得了高达0.2 S/cm的电导率,同时保持了纤维的生物相容性。研究了这些变化背后的物理化学机制。结果表明,HFP通过假掺杂促进了PANI链构象的变化,导致观察到的电导率增强。PCL-PANI纤维纳米制造中这种变化的后果包括纤维直径增加(373±172 nm)、接触角减小(42±3°)和杨氏模量降低(1.6±0.5 MPa),使这些纤维成为神经组织工程的有趣候选材料。使用交流电对分化中的神经干细胞进行电刺激。观察到对细胞排列和基因表达(DCX、MAP2)有积极影响。这种新型优化平台在(1)构建用于药物筛选的体外平台、(2)深部脑电极界面以及(3)完全成熟且功能正常的神经元移植方面显示出有前景的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验