Osorio-Londoño Diana, Heras-Romero Yessica, Tovar-Y-Romo Luis B, Olayo-González Roberto, Morales-Guadarrama Axayácatl
Electrical Engineering Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico.
Experimental Analysis of Behavior Department, Faculty of Psychology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
Polymers (Basel). 2024 Apr 18;16(8):1133. doi: 10.3390/polym16081133.
Complete spinal cord injury causes an irreversible disruption in the central nervous system, leading to motor, sensory, and autonomic function loss, and a secondary injury that constitutes a physical barrier preventing tissue repair. Tissue engineering scaffolds are presented as a permissive platform for cell migration and the reconnection of spared tissue. Iodine-doped plasma pyrrole polymer (pPPy-I), a neuroprotective material, was applied to polylactic acid (PLA) fibers and implanted in a rat complete spinal cord transection injury model to evaluate whether the resulting composite implants provided structural and functional recovery, using magnetic resonance (MR) imaging, diffusion tensor imaging and tractography, magnetic resonance spectroscopy, locomotion analysis, histology, and immunofluorescence. In vivo, MR studies evidenced a tissue response to the implant, demonstrating that the fibrillar composite scaffold moderated the structural effects of secondary damage by providing mechanical stability to the lesion core, tissue reconstruction, and significant motor recovery. Histologic analyses demonstrated that the composite scaffold provided a permissive environment for cell attachment and neural tissue guidance over the fibers, reducing cyst formation. These results supply evidence that pPPy-I enhanced the properties of PLA fibrillar scaffolds as a promising treatment for spinal cord injury recovery.
完全性脊髓损伤会导致中枢神经系统发生不可逆的破坏,进而导致运动、感觉和自主神经功能丧失,以及形成一种阻碍组织修复的物理屏障的继发性损伤。组织工程支架被视为细胞迁移和 spared 组织重新连接的许可平台。将碘掺杂的等离子体吡咯聚合物(pPPy-I),一种神经保护材料,应用于聚乳酸(PLA)纤维,并植入大鼠完全性脊髓横断损伤模型中,以使用磁共振(MR)成像、扩散张量成像和纤维束成像、磁共振波谱、运动分析、组织学和免疫荧光来评估所得复合植入物是否能实现结构和功能恢复。在体内,MR 研究证明了组织对植入物的反应,表明纤维状复合支架通过为损伤核心提供机械稳定性、组织重建和显著的运动恢复来减轻继发性损伤的结构影响。组织学分析表明,复合支架为细胞附着和纤维上的神经组织引导提供了许可环境,减少了囊肿形成。这些结果提供了证据,表明 pPPy-I 增强了 PLA 纤维状支架的性能,是脊髓损伤恢复的一种有前景的治疗方法。