Suppr超能文献

CSF 流抑制对定量 3.0T 颅内血管壁测量的影响具有变异性。

Variable impact of CSF flow suppression on quantitative 3.0T intracranial vessel wall measurements.

机构信息

Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

J Magn Reson Imaging. 2018 Oct;48(4):1120-1128. doi: 10.1002/jmri.26028. Epub 2018 Mar 31.

Abstract

BACKGROUND

Flow suppression techniques have been developed for intracranial (IC) vessel wall imaging (VWI) and optimized using simulations; however, simulation results may not translate in vivo.

PURPOSE

To evaluate experimentally how IC vessel wall and lumen measurements change in identical subjects when evaluated using the most commonly available blood and cerebrospinal fluid (CSF) flow suppression modules and VWI sequences.

STUDY TYPE

Prospective.

POPULATION/SUBJECTS: Healthy adults (n = 13; age = 37 ± 15 years) were enrolled.

FIELD STRENGTH/SEQUENCE: A 3.0T 3D T /proton density (PD)-weighted turbo-spin-echo (TSE) acquisition with post-readout anti-driven equilibrium module, with and without Delay-Alternating-with-Nutation-for-Tailored-Excitation (DANTE) was applied. DANTE flip angle (8-12°) and TSE refocusing angle (sweep = 40-120° or 50-120°) were varied.

ASSESSMENT

Basilar artery and internal carotid artery (ICA) wall thicknesses, CSF signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal ratio (SR) were assessed. Measurements were made by two readers (radiology resident and board-certified neuroradiologist).

STATISTICAL TESTS

A Wilcoxon signed-rank test was applied with corrected two-sided P < 0.05 required for significance (critical P = 0.008, 0.005, and 0.05 for SNR/CNR, SR, and wall thickness, respectively).

RESULTS

A TSE pulse sweep = 40-120° and sweep = 50-120° provided similar (P = 0.55) CSF suppression. Addition of the DANTE preparation reduced CSF SNR from 17.4 to 6.7, thereby providing significant (P < 0.008) improvement in CSF suppression. The DANTE preparation also resulted in a significant (P < 0.008) reduction in vessel wall SNR, but variable vessel wall to CSF CNR improvement (P = 0.87). There was a trend for a difference in blood SNR with vs. without DANTE (P = 0.05). The outer vessel wall diameter and wall thickness values were lower (P < 0.05) with (basilar artery 4.45 mm, 0.81 mm, respectively) vs. without (basilar artery 4.88 mm, 0.97 mm, respectively) DANTE 8°.

DATA CONCLUSION

IC VWI with TSE sweep = 40-120° and with DANTE flip angle = 8° provides the best CSF suppression and CNR of the approaches evaluated. However, improvements are heterogeneous, likely owing to intersubject vessel pulsatility and CSF flow variations, which can lead to variable flow suppression efficacy in these velocity-dependent modules.

LEVEL OF EVIDENCE

2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;48:1120-1128.

摘要

背景

为颅内(IC)血管壁成像(VWI)开发了流动抑制技术,并通过模拟进行了优化;然而,模拟结果可能无法在体内转化。

目的

在相同的受试者中,使用最常用的血液和脑脊液(CSF)流动抑制模块和 VWI 序列,评估 IC 血管壁和管腔测量值如何变化,以实验方式进行评估。

研究类型

前瞻性。

人群/受试者:健康成年人(n=13;年龄=37±15 岁)被纳入。

磁场强度/序列:应用 3.0T 3D T1/质子密度(PD)加权涡轮自旋回波(TSE)采集,带有后读取抗驱动平衡模块,有和没有延迟交替激发尾部优化激发(DANTE)。DANTE 翻转角(8-12°)和 TSE 重聚焦角(扫掠=40-120°或 50-120°)有所不同。

评估

评估基底动脉和颈内动脉(ICA)壁厚度、CSF 信号噪声比(SNR)、对比噪声比(CNR)和信号比(SR)。由两名读者(放射科住院医师和经过董事会认证的神经放射学家)进行测量。

统计检验

应用 Wilcoxon 符号秩检验,需要校正双侧 P<0.05 才有统计学意义(SNR/CNR、SR 和壁厚度的临界 P 值分别为 0.008、0.005 和 0.05)。

结果

TSE 脉冲扫掠=40-120°和扫掠=50-120°提供了相似的 CSF 抑制(P=0.55)。添加 DANTE 准备降低了 CSF SNR 从 17.4 到 6.7,从而在 CSF 抑制方面提供了显著的改善(P<0.008)。DANTE 准备还导致血管壁 SNR 显著降低(P<0.008),但血管壁与 CSF 的 CNR 改善程度不同(P=0.87)。有一个差异的趋势,有与无 DANTE 时血液 SNR 不同(P=0.05)。血管壁外径和壁厚度值较低(P<0.05),有(基底动脉 4.45mm,0.81mm)与无(基底动脉 4.88mm,0.97mm)DANTE 8°。

数据结论

TSE 扫掠=40-120°和 DANTE 翻转角=8°的 IC VWI 提供了评估中 CSF 抑制和 CNR 最佳的方法。然而,这些改进是不均匀的,可能是由于受试者间血管搏动和 CSF 流动的变化,这可能导致这些速度依赖模块的流动抑制效果不同。

证据水平

2 技术功效:第 1 阶段 J. 磁共振成像 2018;48:1120-1128.

相似文献

1
Variable impact of CSF flow suppression on quantitative 3.0T intracranial vessel wall measurements.
J Magn Reson Imaging. 2018 Oct;48(4):1120-1128. doi: 10.1002/jmri.26028. Epub 2018 Mar 31.
4
High resolution simultaneous imaging of intracranial and extracranial arterial wall with improved cerebrospinal fluid suppression.
Magn Reson Imaging. 2017 Dec;44:65-71. doi: 10.1016/j.mri.2017.08.004. Epub 2017 Aug 12.
5
Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging.
Radiology. 2014 Nov;273(2):560-9. doi: 10.1148/radiol.14131717. Epub 2014 Jun 11.
7
Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation.
Magn Reson Med. 2016 Jun;75(6):2286-94. doi: 10.1002/mrm.25785. Epub 2015 Jul 8.
9
Vessel wall and lumen characteristics with age in healthy participants using 3T intracranial vessel wall magnetic resonance imaging.
J Magn Reson Imaging. 2019 Nov;50(5):1452-1460. doi: 10.1002/jmri.26750. Epub 2019 Apr 17.
10
Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo.
Magn Reson Med. 2017 Mar;77(3):1142-1150. doi: 10.1002/mrm.26201. Epub 2016 Feb 28.

引用本文的文献

1
Intracranial vessel wall lesions on MRI: anatomical and pathological issues.
Neurol Sci. 2025 Jul 16. doi: 10.1007/s10072-025-08366-6.
3
Vessel wall MRI in moyamoya disease: arterial wall enhancement varies depending on age, arteries, and disease progression.
Eur Radiol. 2024 Apr;34(4):2183-2194. doi: 10.1007/s00330-023-10251-9. Epub 2023 Oct 5.
4
Vessel Wall Imaging of Intracranial Arteries: Fundamentals and Clinical Applications.
Magn Reson Med Sci. 2023 Oct 1;22(4):447-458. doi: 10.2463/mrms.rev.2021-0140. Epub 2022 Nov 3.
5
Vessel wall MR imaging in neuroradiology.
Radiol Med. 2022 Sep;127(9):1032-1045. doi: 10.1007/s11547-022-01528-y. Epub 2022 Jul 30.
6
Current Clinical Applications of Intracranial Vessel Wall MR Imaging.
Semin Ultrasound CT MR. 2021 Oct;42(5):463-473. doi: 10.1053/j.sult.2021.07.004. Epub 2021 Aug 1.
9
Vessel wall MR imaging of intracranial atherosclerosis.
Cardiovasc Diagn Ther. 2020 Aug;10(4):982-993. doi: 10.21037/cdt-20-470.
10
MR Intracranial Vessel Wall Imaging: A Systematic Review.
J Neuroimaging. 2020 Jul;30(4):428-442. doi: 10.1111/jon.12719. Epub 2020 May 11.

本文引用的文献

1
High resolution simultaneous imaging of intracranial and extracranial arterial wall with improved cerebrospinal fluid suppression.
Magn Reson Imaging. 2017 Dec;44:65-71. doi: 10.1016/j.mri.2017.08.004. Epub 2017 Aug 12.
2
Qualitative Evaluation of a High-Resolution 3D Multi-Sequence Intracranial Vessel Wall Protocol at 3 Tesla MRI.
PLoS One. 2016 Aug 17;11(8):e0160781. doi: 10.1371/journal.pone.0160781. eCollection 2016.
3
Intracranial Vessel Wall MRI: Principles and Expert Consensus Recommendations of the American Society of Neuroradiology.
AJNR Am J Neuroradiol. 2017 Feb;38(2):218-229. doi: 10.3174/ajnr.A4893. Epub 2016 Jul 28.
5
Improved cerebrospinal fluid suppression for intracranial vessel wall MRI.
J Magn Reson Imaging. 2016 Sep;44(3):665-72. doi: 10.1002/jmri.25211. Epub 2016 Mar 7.
6
Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo.
Magn Reson Med. 2017 Mar;77(3):1142-1150. doi: 10.1002/mrm.26201. Epub 2016 Feb 28.
9
Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI.
Magn Reson Med. 2016 Feb;75(2):831-8. doi: 10.1002/mrm.25667. Epub 2015 Mar 13.
10
Multi-sequence whole-brain intracranial vessel wall imaging at 7.0 tesla.
Eur Radiol. 2013 Nov;23(11):2996-3004. doi: 10.1007/s00330-013-2905-z. Epub 2013 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验