Suppr超能文献

基于多视图 CNN 与关系-上下文表示学习的骨盆肿瘤外科规划。

Surgical planning of pelvic tumor using multi-view CNN with relation-context representation learning.

机构信息

Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.

SenseBrain Technology, Princeton, NJ 08540, USA.

出版信息

Med Image Anal. 2021 Apr;69:101954. doi: 10.1016/j.media.2020.101954. Epub 2021 Jan 6.

Abstract

Limb salvage surgery of malignant pelvic tumors is the most challenging procedure in musculoskeletal oncology due to the complex anatomy of the pelvic bones and soft tissues. It is crucial to accurately resect the pelvic tumors with appropriate margins in this procedure. However, there is still a lack of efficient and repetitive image planning methods for tumor identification and segmentation in many hospitals. In this paper, we present a novel deep learning-based method to accurately segment pelvic bone tumors in MRI. Our method uses a multi-view fusion network to extract pseudo-3D information from two scans in different directions and improves the feature representation by learning a relational context. In this way, it can fully utilize spatial information in thick MRI scans and reduce over-fitting when learning from a small dataset. Our proposed method was evaluated on two independent datasets collected from 90 and 15 patients, respectively. The segmentation accuracy of our method was superior to several comparing methods and comparable to the expert annotation, while the average time consumed decreased about 100 times from 1820.3 seconds to 19.2 seconds. In addition, we incorporate our method into an efficient workflow to improve the surgical planning process. Our workflow took only 15 minutes to complete surgical planning in a phantom study, which is a dramatic acceleration compared with the 2-day time span in a traditional workflow.

摘要

骨盆恶性肿瘤的保肢手术是肌肉骨骼肿瘤学中最具挑战性的手术,因为骨盆骨骼和软组织的解剖结构非常复杂。在这个手术中,准确地切除带有适当切缘的骨盆肿瘤至关重要。然而,在许多医院,仍然缺乏用于肿瘤识别和分割的高效且可重复的图像规划方法。在本文中,我们提出了一种新的基于深度学习的方法,用于准确地分割 MRI 中的骨盆骨肿瘤。我们的方法使用多视图融合网络从两个不同方向的扫描中提取伪 3D 信息,并通过学习关系上下文来提高特征表示能力。这样,它可以充分利用厚 MRI 扫描中的空间信息,并减少从小数据集学习时的过拟合。我们的方法在分别来自 90 名和 15 名患者的两个独立数据集上进行了评估。我们的方法的分割准确性优于几种比较方法,并且与专家注释相当,同时平均时间消耗从 1820.3 秒减少到 19.2 秒,减少了约 100 倍。此外,我们将我们的方法纳入到一个高效的工作流程中,以改善手术规划过程。在一个模拟研究中,我们的工作流程仅用了 15 分钟就完成了手术规划,与传统工作流程的 2 天时间相比,有了显著的加速。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验