Suppr超能文献

一种基于TSCA-ViT的创新解决方案,用于资源有限环境下的骨肉瘤诊断。

An Innovative Solution Based on TSCA-ViT for Osteosarcoma Diagnosis in Resource-Limited Settings.

作者信息

He Zengxiao, Liu Jun, Gou Fangfang, Wu Jia

机构信息

School of Computer Science and Engineering, Central South University, Changsha 410083, China.

The Second People's Hospital of Huaihua, Huaihua 418000, China.

出版信息

Biomedicines. 2023 Oct 10;11(10):2740. doi: 10.3390/biomedicines11102740.

Abstract

Identifying and managing osteosarcoma pose significant challenges, especially in resource-constrained developing nations. Advanced diagnostic methods involve isolating the nucleus from cancer cells for comprehensive analysis. However, two main challenges persist: mitigating image noise during the capture and transmission of cellular sections, and providing an efficient, accurate, and cost-effective solution for cell nucleus segmentation. To tackle these issues, we introduce the Twin-Self and Cross-Attention Vision Transformer (TSCA-ViT). This pioneering AI-based system employs a directed filtering algorithm for noise reduction and features an innovative transformer architecture with a twin attention mechanism for effective segmentation. The model also incorporates cross-attention-enabled skip connections to augment spatial information. We evaluated our method on a dataset of 1000 osteosarcoma pathology slide images from the Second People's Hospital of Huaihua, achieving a remarkable average precision of 97.7%. This performance surpasses traditional methodologies. Furthermore, TSCA-ViT offers enhanced computational efficiency owing to its fewer parameters, which results in reduced time and equipment costs. These findings underscore the superior efficacy and efficiency of TSCA-ViT, offering a promising approach for addressing the ongoing challenges in osteosarcoma diagnosis and treatment, particularly in settings with limited resources.

摘要

识别和管理骨肉瘤面临重大挑战,尤其是在资源有限的发展中国家。先进的诊断方法包括从癌细胞中分离细胞核以进行全面分析。然而,两个主要挑战仍然存在:减轻细胞切片捕获和传输过程中的图像噪声,以及为细胞核分割提供高效、准确且经济高效的解决方案。为了解决这些问题,我们引入了双自注意力和交叉注意力视觉Transformer(TSCA-ViT)。这个基于人工智能的开创性系统采用定向滤波算法进行降噪,并具有创新的Transformer架构,带有双注意力机制以实现有效分割。该模型还结合了启用交叉注意力的跳跃连接以增强空间信息。我们在怀化市第二人民医院的1000张骨肉瘤病理切片图像数据集上评估了我们的方法,平均精度达到了97.7%,成绩斐然。这一性能超过了传统方法。此外,TSCA-ViT由于参数较少,计算效率更高,从而降低了时间和设备成本。这些发现突出了TSCA-ViT的卓越功效和效率,为应对骨肉瘤诊断和治疗中持续存在的挑战提供了一种有前景的方法,特别是在资源有限的环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fda5/10604772/42985660a2fa/biomedicines-11-02740-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验