Sinan Muhammad, Ali Amjad, Shah Kamal, Assiri Taghreed A, Nofal Taher A
Department of Mathematics and Statistics, University of Swat, 18000 Khyber Pakhtunkhwa, Pakistan.
Department of Mathematics, Govt P.G Jahanzeb College Swat, 18000 Khyber Pakhtunkhwa, Pakistan.
Results Phys. 2021 Mar;22:103873. doi: 10.1016/j.rinp.2021.103873. Epub 2021 Jan 30.
In the present work, we investigated the transmission dynamics of fractional order SARS-CoV-2 mathematical model with the help of Susceptible , Exposed , Infected , Quarantine , and Recovered . The aims of this work is to investigate the stability and optimal control of the concerned mathematical model for both local and global stability by third additive compound matrix approach and we also obtained threshold value by the next generation approach. The author's visualized the desired results graphically. We also control each of the population of underlying model with control variables by optimal control strategies with Pontryagin's maximum Principle and obtained the desired numerical results by using the homotopy perturbation method. The proposed model is locally asymptotically unstable, while stable globally asymptotically on endemic equilibrium. We also explored the results graphically in numerical section for better understanding of transmission dynamics.
在本研究中,我们借助易感者(Susceptible)、暴露者(Exposed)、感染者(Infected)、隔离者(Quarantine)和康复者(Recovered)对分数阶SARS-CoV-2数学模型的传播动力学进行了研究。本研究的目的是通过第三加法复合矩阵方法研究相关数学模型在局部和全局稳定性方面的稳定性和最优控制,并且我们还通过下一代方法获得了阈值。作者以图形方式直观呈现了期望的结果。我们还通过庞特里亚金极大值原理的最优控制策略,利用控制变量对基础模型的每个群体进行控制,并通过同伦摄动法获得了期望的数值结果。所提出的模型在局部是渐近不稳定的,而在地方病平衡点处是全局渐近稳定的。我们还在数值部分以图形方式探索了结果,以便更好地理解传播动力学。