Shah Kamal, Abdeljawad Thabet, Ud Din Rahim
Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, 11586, Riyadh, Saudi Arabia.
Department of Mathematics, University of Malakand, Chakdara Dir(L), 18000, Khyber Pakhtunkhwa, Pakistan.
Physica A. 2022 Oct 15;604:127915. doi: 10.1016/j.physa.2022.127915. Epub 2022 Jul 16.
In this work, we construct a new SARS-CoV-2 mathematical model of SQIR type. The considered model has four compartments as susceptible , quarantine , infected and recovered Here saturated nonlinear incidence rate is used for the transmission of the disease. We formulate our model first and then the disease-free and endemic equilibrium (EE) are calculated. Further, the basic reproduction number is computed via the next generation matrix method. Also on using the idea of Dulac function, the global stability for the proposed model is discussed. By using the Routh-Hurwitz criteria, local stability is investigated. Through nonstandard finite difference (NSFD) scheme, numerical simulations are performed. Keeping in mind the significant importance of fractional calculus in recent time, the considered model is also investigated under fractional order derivative in Caputo sense. Finally, numerical interpretation of the model by using various fractional order derivatives are provided. For fractional order model, we utilize fractional order NSFD method. Comparison with some real data is also given.
在这项工作中,我们构建了一个新的SQIR型新型冠状病毒数学模型。所考虑的模型有四个部分,即易感者、隔离者、感染者和康复者。这里使用饱和非线性发病率来描述疾病的传播。我们首先建立模型,然后计算无病平衡点和地方病平衡点。此外,通过下一代矩阵法计算基本再生数。同时,利用杜拉克函数的思想,讨论了所提模型的全局稳定性。通过劳斯 - 赫尔维茨准则研究局部稳定性。通过非标准有限差分(NSFD)格式进行数值模拟。考虑到分数阶微积分近年来的重要意义,还在卡普托意义下的分数阶导数下研究了所考虑的模型。最后,给出了使用各种分数阶导数对模型的数值解释。对于分数阶模型,我们采用分数阶NSFD方法。还给出了与一些实际数据的比较。