Suppr超能文献

预测和收集蛋白质-代谢物相互作用。

Prediction and collection of protein-metabolite interactions.

机构信息

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Inner Mongolia, 010010, China.

Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab014.

Abstract

Interactions between proteins and small molecule metabolites play vital roles in regulating protein functions and controlling various cellular processes. The activities of metabolic enzymes, transcription factors, transporters and membrane receptors can all be mediated through protein-metabolite interactions (PMIs). Compared with the rich knowledge of protein-protein interactions, little is known about PMIs. To the best of our knowledge, no existing database has been developed for collecting PMIs. The recent rapid development of large-scale mass spectrometry analysis of biomolecules has led to the discovery of large amounts of PMIs. Therefore, we developed the PMI-DB to provide a comprehensive and accurate resource of PMIs. A total of 49 785 entries were manually collected in the PMI-DB, corresponding to 23 small molecule metabolites, 9631 proteins and 4 species. Unlike other databases that only provide positive samples, the PMI-DB provides non-interaction between proteins and metabolites, which not only reduces the experimental cost for biological experimenters but also facilitates the construction of more accurate algorithms for researchers using machine learning. To show the convenience of the PMI-DB, we developed a deep learning-based method to predict PMIs in the PMI-DB and compared it with several methods. The experimental results show that the area under the curve and area under the precision-recall curve of our method are 0.88 and 0.95, respectively. Overall, the PMI-DB provides a user-friendly interface for browsing the biological functions of metabolites/proteins of interest, and experimental techniques for identifying PMIs in different species, which provides important support for furthering the understanding of cellular processes. The PMI-DB is freely accessible at http://easybioai.com/PMIDB.

摘要

蛋白质与小分子代谢物之间的相互作用在调节蛋白质功能和控制各种细胞过程中起着至关重要的作用。代谢酶、转录因子、转运蛋白和膜受体的活性都可以通过蛋白质-代谢物相互作用(PMIs)来介导。与丰富的蛋白质-蛋白质相互作用知识相比,人们对 PMIs 的了解甚少。据我们所知,目前还没有开发用于收集 PMIs 的数据库。近年来,大规模生物分子质谱分析技术的快速发展,导致大量 PMIs 的发现。因此,我们开发了 PMI-DB,以提供一个全面而准确的 PMIs 资源。PMI-DB 中手动收集了总共 49785 条条目,对应于 23 种小分子代谢物、9631 种蛋白质和 4 个物种。与其他仅提供阳性样本的数据库不同,PMI-DB 提供了蛋白质和代谢物之间的非相互作用,这不仅降低了生物实验者的实验成本,也为使用机器学习的研究人员构建更准确的算法提供了便利。为了展示 PMI-DB 的便利性,我们开发了一种基于深度学习的方法来预测 PMI-DB 中的 PMIs,并与几种方法进行了比较。实验结果表明,我们方法的曲线下面积和精度-召回率曲线下面积分别为 0.88 和 0.95。总的来说,PMI-DB 为浏览感兴趣的代谢物/蛋白质的生物学功能以及在不同物种中识别 PMIs 的实验技术提供了一个用户友好的界面,为进一步了解细胞过程提供了重要支持。PMI-DB 可在 http://easybioai.com/PMIDB 免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验