Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, United Kingdom.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae347.
From the catalytic breakdown of nutrients to signaling, interactions between metabolites and proteins play an essential role in cellular function. An important case is cell-cell communication, where metabolites, secreted into the microenvironment, initiate signaling cascades by binding to intra- or extracellular receptors of neighboring cells. Protein-protein cell-cell communication interactions are routinely predicted from transcriptomic data. However, inferring metabolite-mediated intercellular signaling remains challenging, partially due to the limited size of intercellular prior knowledge resources focused on metabolites. Here, we leverage knowledge-graph infrastructure to integrate generalistic metabolite-protein with curated metabolite-receptor resources to create MetalinksDB. MetalinksDB is an order of magnitude larger than existing metabolite-receptor resources and can be tailored to specific biological contexts, such as diseases, pathways, or tissue/cellular locations. We demonstrate MetalinksDB's utility in identifying deregulated processes in renal cancer using multi-omics bulk data. Furthermore, we infer metabolite-driven intercellular signaling in acute kidney injury using spatial transcriptomics data. MetalinksDB is a comprehensive and customizable database of intercellular metabolite-protein interactions, accessible via a web interface (https://metalinks.omnipathdb.org/) and programmatically as a knowledge graph (https://github.com/biocypher/metalinks). We anticipate that by enabling diverse analyses tailored to specific biological contexts, MetalinksDB will facilitate the discovery of disease-relevant metabolite-mediated intercellular signaling processes.
从营养物质的催化分解到信号传递,代谢物和蛋白质之间的相互作用在细胞功能中起着至关重要的作用。一个重要的例子是细胞间通讯,其中代谢物分泌到微环境中,通过与相邻细胞的细胞内或细胞外受体结合,启动信号级联反应。蛋白质-蛋白质的细胞间通讯相互作用通常可以从转录组数据中预测。然而,推断代谢物介导的细胞间信号传递仍然具有挑战性,部分原因是针对代谢物的细胞间先验知识资源的规模有限。在这里,我们利用知识图谱基础设施将一般性的代谢物-蛋白质与经过精心整理的代谢物-受体资源整合在一起,创建了 MetalinksDB。MetalinksDB 的规模比现有的代谢物-受体资源大一个数量级,并且可以针对特定的生物学背景(如疾病、途径或组织/细胞位置)进行定制。我们使用多组学批量数据证明了 MetalinksDB 在识别肾癌中失调过程的实用性。此外,我们使用空间转录组学数据推断急性肾损伤中的代谢物驱动的细胞间信号传递。MetalinksDB 是一个全面且可定制的细胞间代谢物-蛋白质相互作用数据库,可通过网络界面(https://metalinks.omnipathdb.org/)和知识图谱(https://github.com/biocypher/metalinks)进行访问。我们预计,通过实现针对特定生物学背景的多样化分析,MetalinksDB 将促进与疾病相关的代谢物介导的细胞间信号传递过程的发现。