Suppr超能文献

自动神经节细胞检测提高 Hirschsprung 病诊断的效率和准确性。

Automatic ganglion cell detection for improving the efficiency and accuracy of hirschprung disease diagnosis.

机构信息

Institute of Pathology, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel.

Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.

出版信息

Sci Rep. 2021 Feb 8;11(1):3306. doi: 10.1038/s41598-021-82869-y.

Abstract

Histopathologic diagnosis of Hirschsprung's disease (HSCR) is time consuming and requires expertise. The use of artificial intelligence (AI) in digital pathology is actively researched and may improve the diagnosis of HSCR. The purpose of this research was to develop an algorithm capable of identifying ganglion cells in digital pathology slides and implement it as an assisting tool for the pathologist in the diagnosis of HSCR. Ninety five digital pathology slides were used for the construction and training of the algorithm. Fifty cases suspected for HSCR (727 slides) were used as a validation cohort. Image sets suspected to contain ganglion cells were chosen by the algorithm and then reviewed and scored by five pathologists, one HSCR expert and 4 non-experts. The algorithm was able to identify ganglion cells with 96% sensitivity and 99% specificity (in normal colon) as well as to correctly identify a case previously misdiagnosed as non-HSCR. The expert was able to achieve perfectly accurate diagnoses based solely on the images suggested by the algorithm, with over 95% time saved. Non-experts would require expert consultation in 20-58% of the cases to achieve similar results. The use of AI in the diagnosis of HSCR can greatly reduce the time and effort required for diagnosis and improve accuracy.

摘要

先天性巨结肠症(HSCR)的组织病理学诊断既耗时又需要专业知识。人工智能(AI)在数字病理学中的应用正在积极研究中,可能有助于提高 HSCR 的诊断水平。本研究旨在开发一种能够识别数字病理学切片中神经节细胞的算法,并将其实现为病理学家诊断 HSCR 的辅助工具。该算法使用了 95 张数字病理学幻灯片进行构建和训练,并使用 50 例疑似 HSCR(727 张幻灯片)作为验证队列。算法选择疑似含有神经节细胞的图像集,然后由五名病理学家、一名 HSCR 专家和四名非专家进行回顾和评分。该算法能够以 96%的敏感性和 99%的特异性(在正常结肠中)识别神经节细胞,并正确识别之前误诊为非 HSCR 的病例。专家仅根据算法建议的图像就能做出完全准确的诊断,节省了 95%以上的时间。非专家则需要在 20-58%的病例中咨询专家以获得类似的结果。AI 在 HSCR 诊断中的应用可以大大减少诊断所需的时间和精力,并提高准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfa/7870950/ea86d7f6393a/41598_2021_82869_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验