Suppr超能文献

全面描绘受疾病突变影响的蛋白质-蛋白质相互作用。

Comprehensive characterization of protein-protein interactions perturbed by disease mutations.

机构信息

Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.

Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Nat Genet. 2021 Mar;53(3):342-353. doi: 10.1038/s41588-020-00774-y. Epub 2021 Feb 8.

Abstract

Technological and computational advances in genomics and interactomics have made it possible to identify how disease mutations perturb protein-protein interaction (PPI) networks within human cells. Here, we show that disease-associated germline variants are significantly enriched in sequences encoding PPI interfaces compared to variants identified in healthy participants from the projects 1000 Genomes and ExAC. Somatic missense mutations are also significantly enriched in PPI interfaces compared to noninterfaces in 10,861 tumor exomes. We computationally identified 470 putative oncoPPIs in a pan-cancer analysis and demonstrate that oncoPPIs are highly correlated with patient survival and drug resistance/sensitivity. We experimentally validate the network effects of 13 oncoPPIs using a systematic binary interaction assay, and also demonstrate the functional consequences of two of these on tumor cell growth. In summary, this human interactome network framework provides a powerful tool for prioritization of alleles with PPI-perturbing mutations to inform pathobiological mechanism- and genotype-based therapeutic discovery.

摘要

基因组学和相互作用组学的技术和计算进展使得识别疾病突变如何扰乱人类细胞内的蛋白质-蛋白质相互作用(PPI)网络成为可能。在这里,我们表明与来自 1000 基因组和 ExAC 项目的健康参与者中鉴定的变体相比,与疾病相关的种系变体在编码 PPI 界面的序列中显著富集。与非界面相比,体细胞错义突变在 10861 个肿瘤外显子中也显著富集于 PPI 界面。我们在泛癌分析中通过计算方法鉴定了 470 个推定的致癌 PPI,并证明致癌 PPI 与患者的生存和耐药性/敏感性高度相关。我们使用系统的二元相互作用测定实验验证了 13 个致癌 PPI 的网络效应,还证明了其中两个对肿瘤细胞生长的功能后果。总之,这个人类相互作用组网络框架为优先考虑具有 PPI 扰乱突变的等位基因提供了一个有力的工具,以告知基于病理生物学机制和基因型的治疗发现。

相似文献

1
Comprehensive characterization of protein-protein interactions perturbed by disease mutations.
Nat Genet. 2021 Mar;53(3):342-353. doi: 10.1038/s41588-020-00774-y. Epub 2021 Feb 8.
2
Structurally-informed human interactome reveals proteome-wide perturbations by disease mutations.
bioRxiv. 2024 Feb 1:2023.04.24.538110. doi: 10.1101/2023.04.24.538110.
3
Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.
PLoS One. 2016 Apr 4;11(4):e0152929. doi: 10.1371/journal.pone.0152929. eCollection 2016.
4
Mapping oncogenic protein interactions for precision medicine.
Int J Cancer. 2022 Jul 1;151(1):7-19. doi: 10.1002/ijc.33954. Epub 2022 Feb 14.
5
Predicting functional consequences of mutations using molecular interaction network features.
Hum Genet. 2022 Jun;141(6):1195-1210. doi: 10.1007/s00439-021-02329-5. Epub 2021 Aug 25.
6
Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes.
PLoS Comput Biol. 2020 Feb 26;16(2):e1007701. doi: 10.1371/journal.pcbi.1007701. eCollection 2020 Feb.
7
Estimating dispensable content in the human interactome.
Nat Commun. 2019 Jul 19;10(1):3205. doi: 10.1038/s41467-019-11180-2.
8
ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling.
J Clin Invest. 2013 Aug;123(8):3243-53. doi: 10.1172/JCI69134. Epub 2013 Jul 8.
9
TROY interacts with Rho guanine nucleotide dissociation inhibitor α (RhoGDIα) to mediate Nogo-induced inhibition of neurite outgrowth.
J Biol Chem. 2013 Nov 22;288(47):34276-34286. doi: 10.1074/jbc.M113.519744. Epub 2013 Oct 15.
10
Cancer networks and beyond: interpreting mutations using the human interactome and protein structure.
Semin Cancer Biol. 2013 Aug;23(4):219-26. doi: 10.1016/j.semcancer.2013.05.002. Epub 2013 May 13.

引用本文的文献

1
diaPASEF-Powered Chemoproteomics Enables Deep Kinome Interaction Profiling.
J Proteome Res. 2025 Aug 27. doi: 10.1021/acs.jproteome.5c00109.
2
Mutations in tumor signaling, metastases, and synthetic lethality establish distinct patterns.
PLoS Comput Biol. 2025 Aug 4;21(8):e1013351. doi: 10.1371/journal.pcbi.1013351. eCollection 2025 Aug.
4
Conserved missense variant pathogenicity and correlated phenotypes across paralogous genes.
Genome Biol. 2025 Jul 7;26(1):197. doi: 10.1186/s13059-025-03663-x.
5
Multimeric protein interaction and complex prediction: Structure, dynamics and function.
Comput Struct Biotechnol J. 2025 May 16;27:1975-1997. doi: 10.1016/j.csbj.2025.05.009. eCollection 2025.
6
Emerging clinical applications of ADAR based RNA editing.
Stem Cells Transl Med. 2025 May 19;14(5). doi: 10.1093/stcltm/szaf016.
7
Disentangling the mutational effects on protein stability and interaction of human MLH1.
PLoS Genet. 2025 Apr 28;21(4):e1011681. doi: 10.1371/journal.pgen.1011681. eCollection 2025 Apr.
8
NetREm: Network Regression Embeddings reveal cell-type transcription factor coordination for gene regulation.
Bioinform Adv. 2024 Dec 20;5(1):vbae206. doi: 10.1093/bioadv/vbae206. eCollection 2025.
10
Recent progress and future challenges in structure-based protein-protein interaction prediction.
Mol Ther. 2025 May 7;33(5):2252-2268. doi: 10.1016/j.ymthe.2025.04.003. Epub 2025 Apr 6.

本文引用的文献

1
A reference map of the human binary protein interactome.
Nature. 2020 Apr;580(7803):402-408. doi: 10.1038/s41586-020-2188-x. Epub 2020 Apr 8.
3
A genome-wide positioning systems network algorithm for in silico drug repurposing.
Nat Commun. 2019 Aug 2;10(1):3476. doi: 10.1038/s41467-019-10744-6.
5
Network-based prediction of drug combinations.
Nat Commun. 2019 Mar 13;10(1):1197. doi: 10.1038/s41467-019-09186-x.
6
Personal Mutanomes Meet Modern Oncology Drug Discovery and Precision Health.
Pharmacol Rev. 2019 Jan;71(1):1-19. doi: 10.1124/pr.118.016253. Epub 2018 Dec 13.
7
Novel BRAF alteration in desmoplastic infantile ganglioglioma with response to targeted therapy.
Acta Neuropathol Commun. 2018 Nov 5;6(1):118. doi: 10.1186/s40478-018-0622-1.
8
Network-based approach to prediction and population-based validation of in silico drug repurposing.
Nat Commun. 2018 Jul 12;9(1):2691. doi: 10.1038/s41467-018-05116-5.
9
An interactome perturbation framework prioritizes damaging missense mutations for developmental disorders.
Nat Genet. 2018 Jul;50(7):1032-1040. doi: 10.1038/s41588-018-0130-z. Epub 2018 Jun 11.
10
Comprehensive Characterization of Cancer Driver Genes and Mutations.
Cell. 2018 Apr 5;173(2):371-385.e18. doi: 10.1016/j.cell.2018.02.060.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验