Rainaldi Joseph, Mali Prashant, Nourreddine Sami
Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States.
Biomedical Sciences PhD Program, University of California San Diego, La Jolla, CA 92093, United States.
Stem Cells Transl Med. 2025 May 19;14(5). doi: 10.1093/stcltm/szaf016.
RNA editing via adenosine deaminases acting on RNA (ADARs) offers precise and reversible modifications at the RNA level, complementing traditional DNA-targeting therapies. ADAR enzymes catalyze the conversion of adenosine to inosine within double-stranded RNA, influencing critical cellular processes such as translation, splicing, and RNA stability. Utilizing endogenous ADARs guided by exogenous guide RNAs enables site-specific RNA editing without the need for transgenic editor expression, minimizing immunogenicity, and enhancing control over gene expression. Towards addressing the challenges in ensuring specificity, optimizing delivery methods, and navigating regulatory landscapes, ongoing innovations in guide RNA design, delivery technologies, and computational modeling are propelling the field forward. Already, initial clinical advancements are demonstrating the potential of ADAR-mediated RNA editing in treating human diseases. Collaborative efforts among researchers, clinicians, and industry partners are overcoming existing hurdles, progressively positioning ADAR-mediated RNA editing to revolutionize personalized medicine and provide effective treatments for a wide array of historically intractable diseases.
通过作用于RNA的腺苷脱氨酶(ADARs)进行的RNA编辑可在RNA水平上提供精确且可逆的修饰,是对传统DNA靶向疗法的补充。ADAR酶催化双链RNA中的腺苷转化为次黄嘌呤,影响诸如翻译、剪接和RNA稳定性等关键细胞过程。利用由外源性向导RNA引导的内源性ADARs能够实现位点特异性RNA编辑,而无需转基因编辑器表达,从而将免疫原性降至最低,并增强对基因表达的控制。为应对在确保特异性、优化递送方法以及应对监管环境方面的挑战,向导RNA设计、递送技术和计算建模方面的不断创新正在推动该领域向前发展。目前,初步的临床进展已证明ADAR介导的RNA编辑在治疗人类疾病方面的潜力。研究人员、临床医生和行业合作伙伴之间的合作努力正在克服现有障碍,逐步使ADAR介导的RNA编辑能够彻底改变个性化医疗,并为一系列历来难以治疗的疾病提供有效治疗方法。