ACS Biomater Sci Eng. 2021 Sep 13;7(9):4282-4292. doi: 10.1021/acsbiomaterials.0c01690. Epub 2021 Feb 9.
Storage and transportation of protein therapeutics using refrigeration is a costly process; a reliable electrical supply is vital, expensive equipment is needed, and unique transportation is required. Reducing the reliance on the cold chain would enable low-cost transportation and storage of biologics, ultimately improving accessibility of this class of therapeutics to patients in remote locations. Herein, we report on the synthesis of charged poly(-isopropylacrylamide) nanogels that efficiently adsorb a range of different proteins of varying isoelectric points and molecular weights (e.g., adsorption capacity () = 4.7 ± 0.2 mg/mg at 6 mg/mL initial IgG concentration), provide protection from external environmental factors (i.e., temperature), and subsequently release the proteins in an efficient manner (e.g., 100 ± 1% at 2 mg/mL initial IgG concentration). Both cationic and anionic nanogels were synthesized and selectively chosen based on the ability to form electrostatic interactions with adsorbed proteins (e.g., cationic nanogels adsorb low isoelectric point proteins whereas anionic nanogels adsorb high isoelectric point proteins). The nanogel-protein complex formed upon adsorption increases the stabilization of the protein's tertiary structure, providing protection against denaturation at elevated temperatures (e.g., 84 ± 4% of the protected IgG was stabilized when exposed to 65 °C). The addition of a high molar salt solution (e.g., 40 mM CaCl solution) to protein-laden nanogels disrupts the electrostatic interactions and collapses the nanogel, ultimately releasing the protein. The versatile materials utilized, in addition to the protein loading and release mechanisms described, provide a simple and efficient strategy to protect fragile biologics for their transport to remote areas without necessitating costly storage equipment.
使用冷藏来储存和运输蛋白质治疗药物是一个成本高昂的过程;可靠的电力供应至关重要,需要昂贵的设备,并且需要独特的运输方式。减少对冷链的依赖将使生物制剂能够低成本运输和储存,最终改善偏远地区患者获得这类治疗药物的可及性。在此,我们报告了带电聚(异丙基丙烯酰胺)纳米凝胶的合成,该纳米凝胶能够有效吸附各种不同等电点和分子量的蛋白质(例如,在 6 mg/mL 的初始 IgG 浓度下,吸附容量 () = 4.7 ± 0.2 mg/mg),提供对外界环境因素(例如温度)的保护,并且能够以有效的方式释放蛋白质(例如,在 2 mg/mL 的初始 IgG 浓度下,释放量为 100 ± 1%)。阳离子和阴离子纳米凝胶均被合成,并根据与吸附蛋白质形成静电相互作用的能力进行有选择性的选择(例如,阳离子纳米凝胶吸附低等电点蛋白质,而阴离子纳米凝胶吸附高等电点蛋白质)。在吸附过程中形成的纳米凝胶-蛋白质复合物增加了蛋白质三级结构的稳定性,提供了对抗高温变性的保护(例如,当暴露于 65°C 时,84 ± 4%的受保护 IgG 被稳定)。向载有蛋白质的纳米凝胶中添加高摩尔盐溶液(例如,40 mM CaCl 溶液)会破坏静电相互作用并使纳米凝胶塌陷,最终释放蛋白质。所利用的多功能材料以及所描述的蛋白质加载和释放机制提供了一种简单有效的策略,可以保护脆弱的生物制剂在运输到偏远地区时无需使用昂贵的储存设备。