Institute of Biophysics, Biological Research Centre, Szeged, Hungary.
Doctoral School of Biology, University of Szeged, Szeged, Hungary.
J Cereb Blood Flow Metab. 2021 Sep;41(9):2201-2215. doi: 10.1177/0271678X21992638. Epub 2021 Feb 9.
Microfluidic lab-on-a-chip (LOC) devices allow the study of blood-brain barrier (BBB) properties in dynamic conditions. We studied a BBB model, consisting of human endothelial cells derived from hematopoietic stem cells in co-culture with brain pericytes, in an LOC device to study fluid flow in the regulation of endothelial, BBB and glycocalyx-related genes and surface charge. The highly negatively charged endothelial surface glycocalyx functions as mechano-sensor detecting shear forces generated by blood flow on the luminal side of brain endothelial cells and contributes to the physical barrier of the BBB. Despite the importance of glycocalyx in the regulation of BBB permeability in physiological conditions and in diseases, the underlying mechanisms remained unclear. The MACE-seq gene expression profiling analysis showed differentially expressed endothelial, BBB and glycocalyx core protein genes after fluid flow, as well as enriched pathways for the extracellular matrix molecules. We observed increased barrier properties, a higher intensity glycocalyx staining and a more negative surface charge of human brain-like endothelial cells (BLECs) in dynamic conditions. Our work is the first study to provide data on BBB properties and glycocalyx of BLECs in an LOC device under dynamic conditions and confirms the importance of fluid flow for BBB culture models.
微流控芯片实验室 (LOC) 设备允许在动态条件下研究血脑屏障 (BBB) 的特性。我们在 LOC 设备中研究了一种 BBB 模型,该模型由造血干细胞来源的人内皮细胞与脑周细胞共培养而成,以研究内皮细胞、BBB 和糖萼相关基因和表面电荷的调控中的流体流动。高度带负电荷的内皮表面糖萼作为机械传感器,检测血流在脑内皮细胞腔侧产生的剪切力,并有助于 BBB 的物理屏障。尽管糖萼在生理条件和疾病中调节 BBB 通透性方面很重要,但潜在的机制仍不清楚。MACE-seq 基因表达谱分析显示,在流体流动后,内皮细胞、BBB 和糖萼核心蛋白基因表达水平存在差异,细胞外基质分子的富集途径也发生了变化。我们观察到动态条件下人脑样内皮细胞 (BLEC) 的屏障特性增加、糖萼染色强度增加和表面负电荷增加。我们的工作是第一项在 LOC 设备中动态条件下提供 BBB 特性和 BLEC 糖萼数据的研究,证实了流体流动对 BBB 培养模型的重要性。