Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain.
Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
J Nanobiotechnology. 2023 Mar 29;21(1):115. doi: 10.1186/s12951-023-01798-2.
The lack of predictive models that mimic the blood-brain barrier (BBB) hinders the development of effective drugs for neurodegenerative diseases. Animal models behave differently from humans, are expensive and have ethical constraints. Organ-on-a-chip (OoC) platforms offer several advantages to resembling physiological and pathological conditions in a versatile, reproducible, and animal-free manner. In addition, OoC give us the possibility to incorporate sensors to determine cell culture features such as trans-endothelial electrical resistance (TEER). Here, we developed a BBB-on-a-chip (BBB-oC) platform with a TEER measurement system in close distance to the barrier used for the first time for the evaluation of the permeability performance of targeted gold nanorods for theranostics of Alzheimer's disease. GNR-PEG-Ang2/D1 is a therapeutic nanosystem previously developed by us consisting of gold nanorods (GNR) functionalized with polyethylene glycol (PEG), angiopep-2 peptide (Ang2) to overcome the BBB and the D1 peptide as beta amyloid fibrillation inhibitor, finally obtaining GNR-PEG-Ang2/D1 which showed to be useful for disaggregation of the amyloid in in vitro and in vivo models. In this work, we evaluated its cytotoxicity, permeability, and some indications of its impact on the brain endothelium by employing an animal-free device based on neurovascular human cells.
In this work, we fabricated a BBB-oC with human astrocytes, pericytes and endothelial cells and a TEER measuring system (TEER-BBB-oC) integrated at a micrometric distance of the endothelial barrier. The characterization displayed a neurovascular network and the expression of tight junctions in the endothelium. We produced GNR-PEG-Ang2/D1 and determined its non-cytotoxic range (0.05-0.4 nM) for plated cells included in the BBB-oC and confirmed its harmless effect at the highest concentration (0.4 nM) in the microfluidic device. The permeability assays revealed that GNR-PEG-Ang2/D1 cross the BBB and this entry is facilitated by Ang2 peptide. Parallel to the permeability analysis of GNR-PEG-Ang2/D1, an interesting behavior of the TJs expression was observed after its administration probably related to the ligands on the nanoparticle surface.
BBB-oC with a novel TEER integrated setup which allow a correct read-out and cell imaging monitoring was proven as a functional and throughput platform to evaluate the brain permeability performance of nanotherapeutics in a physiological environment with human cells, putting forward a viable alternative to animal experimentation.
缺乏能够模拟血脑屏障 (BBB) 的预测模型,阻碍了针对神经退行性疾病的有效药物的开发。动物模型的行为与人类不同,成本高昂且存在伦理限制。器官芯片 (OoC) 平台以灵活、可重复且无动物的方式提供了许多类似于生理和病理条件的优势。此外,OoC 使我们能够将传感器整合到细胞培养特征的确定中,例如跨内皮电阻 (TEER)。在这里,我们首次开发了一种带有 TEER 测量系统的 BBB-on-a-chip (BBB-oC) 平台,用于评估针对阿尔茨海默病治疗的靶向金纳米棒的通透性性能。GNR-PEG-Ang2/D1 是我们之前开发的一种治疗性纳米系统,由金纳米棒 (GNR) 与聚乙二醇 (PEG) 、血管生成素-2 肽 (Ang2) 组成,以克服血脑屏障,D1 肽作为β淀粉样蛋白纤维抑制剂,最终得到 GNR-PEG-Ang2/D1,在体外和体内模型中显示出对淀粉样蛋白的解聚有用。在这项工作中,我们使用基于神经血管人类细胞的无动物设备评估了其细胞毒性、通透性以及对脑内皮细胞的一些影响的指示。
在这项工作中,我们制造了一种带有人类星形胶质细胞、周细胞和内皮细胞的 BBB-oC 以及集成在内皮屏障微米距离处的 TEER 测量系统 (TEER-BBB-oC)。表征显示出神经血管网络和内皮细胞中紧密连接的表达。我们生产了 GNR-PEG-Ang2/D1,并确定了其对包括在 BBB-oC 中的贴壁细胞的无毒范围(0.05-0.4 nM),并在微流控设备中证实了其在最高浓度(0.4 nM)下的无害作用。通透性分析表明,GNR-PEG-Ang2/D1 穿过 BBB,而 Ang2 肽促进了这种进入。在对 GNR-PEG-Ang2/D1 的通透性分析的同时,在给予纳米粒子后观察到 TJ 表达的有趣行为,这可能与纳米粒子表面的配体有关。
带有新型集成 TEER 设置的 BBB-oC 可正确读出和细胞成像监测,被证明是一种功能齐全、高通量的平台,可在包含人类细胞的生理环境中评估纳米治疗药物的脑通透性性能,为动物实验提供了可行的替代方案。