Suppr超能文献

基质僵硬诱导肺血管内皮细胞中致病性 QKI-miR-7-SRSF1 信号轴。

Matrix stiffening induces a pathogenic QKI-miR-7-SRSF1 signaling axis in pulmonary arterial endothelial cells.

机构信息

Division of Cardiology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.

Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2021 May 1;320(5):L726-L738. doi: 10.1152/ajplung.00407.2020. Epub 2021 Feb 10.

Abstract

Pulmonary arterial hypertension (PAH) refers to a set of heterogeneous vascular diseases defined by elevation of pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR), leading to right ventricular (RV) remodeling and often death. Early increases in pulmonary artery stiffness in PAH drive pathogenic alterations of pulmonary arterial endothelial cells (PAECs), leading to vascular remodeling. Dysregulation of microRNAs can drive PAEC dysfunction. However, the role of vascular stiffness in regulating pathogenic microRNAs in PAH is incompletely understood. Here, we demonstrated that extracellular matrix (ECM) stiffening downregulated miR-7 levels in PAECs. The RNA-binding protein quaking (QKI) has been implicated in the biogenesis of miR-7. Correspondingly, we found that ECM stiffness upregulated QKI, and QKI knockdown led to increased miR-7. Downstream of the QKI-miR-7 axis, the serine and arginine-rich splicing factor 1 (SRSF1) was identified as a direct target of miR-7. Correspondingly, SRSF1 was reciprocally upregulated in PAECs exposed to stiff ECM and was negatively correlated with miR-7. Decreased miR-7 and increased QKI and SRSF1 were observed in lungs from patients with PAH and PAH rats exposed to SU5416/hypoxia. Lastly, miR-7 upregulation inhibited human PAEC migration, whereas forced SRSF1 expression reversed this phenotype, proving that miR-7 depended upon SRSF1 to control migration. In aggregate, these results define the QKI-miR-7-SRSF1 axis as a mechanosensitive mechanism linking pulmonary arterial vascular stiffness to pathogenic endothelial function. These findings emphasize implications relevant to PAH and suggest the potential benefit of developing therapies that target this miRNA-dependent axis in PAH.

摘要

肺动脉高压(PAH)是一组异质性血管疾病,其特征为肺动脉压力(PAP)和肺血管阻力(PVR)升高,导致右心室(RV)重构,常导致死亡。PAH 中肺动脉僵硬度的早期增加会导致肺动脉内皮细胞(PAEC)的病理性改变,导致血管重构。microRNA 的失调可导致 PAEC 功能障碍。然而,血管僵硬在调节 PAH 中致病 microRNA 中的作用尚不完全清楚。在这里,我们证明细胞外基质(ECM)变硬会使 PAEC 中的 miR-7 水平降低。RNA 结合蛋白 quaking(QKI)已被牵涉到 miR-7 的生物发生中。相应地,我们发现 ECM 僵硬会上调 QKI,而 QKI 敲低会导致 miR-7 增加。在 QKI-miR-7 轴的下游,发现丝氨酸/精氨酸丰富剪接因子 1(SRSF1)是 miR-7 的直接靶标。相应地,在暴露于硬 ECM 的 PAEC 中,SRSF1 被反向上调,并且与 miR-7 呈负相关。在患有 PAH 的患者的肺部和暴露于 SU5416/低氧的 PAH 大鼠的肺部中观察到 miR-7 减少、QKI 和 SRSF1 增加。最后,miR-7 的上调抑制了人 PAEC 的迁移,而强制表达 SRSF1 则逆转了这种表型,证明 miR-7 依赖于 SRSF1 来控制迁移。总的来说,这些结果定义了 QKI-miR-7-SRSF1 轴作为将肺血管僵硬与致病内皮功能联系起来的机械敏感机制。这些发现强调了与 PAH 相关的意义,并表明靶向该 miRNA 依赖轴的治疗方法在 PAH 中具有潜在的益处。

相似文献

1
Matrix stiffening induces a pathogenic QKI-miR-7-SRSF1 signaling axis in pulmonary arterial endothelial cells.
Am J Physiol Lung Cell Mol Physiol. 2021 May 1;320(5):L726-L738. doi: 10.1152/ajplung.00407.2020. Epub 2021 Feb 10.
2
LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension.
Am J Physiol Heart Circ Physiol. 2020 Aug 1;319(2):H377-H391. doi: 10.1152/ajpheart.00717.2019. Epub 2020 Jun 19.
4
miR-182-3p/Myadm contribute to pulmonary artery hypertension vascular remodeling via a KLF4/p21-dependent mechanism.
Theranostics. 2020 Apr 25;10(12):5581-5599. doi: 10.7150/thno.44687. eCollection 2020.
5
MicroRNA-663 prevents monocrotaline-induced pulmonary arterial hypertension by targeting TGF-β1/smad2/3 signaling.
J Mol Cell Cardiol. 2021 Dec;161:9-22. doi: 10.1016/j.yjmcc.2021.07.010. Epub 2021 Jul 31.
8
Exosomal miR-211 contributes to pulmonary hypertension via attenuating CaMK1/PPAR-γaxis.
Vascul Pharmacol. 2021 Feb;136:106820. doi: 10.1016/j.vph.2020.106820. Epub 2020 Nov 22.
10
Upregulation of Angiomotin-Like 2 Ameliorates Experimental Pulmonary Arterial Hypertension by Inactivating YAP1 Signaling.
J Cardiovasc Pharmacol. 2024 Sep 1;84(3):356-369. doi: 10.1097/FJC.0000000000001606.

引用本文的文献

3
Advances in epigenetic modifications of autophagic process in pulmonary hypertension.
Front Immunol. 2023 Jun 16;14:1206406. doi: 10.3389/fimmu.2023.1206406. eCollection 2023.
4
Influence of PHA Substrate Surface Characteristics on the Functional State of Endothelial Cells.
J Funct Biomater. 2023 Feb 2;14(2):85. doi: 10.3390/jfb14020085.
5
Serine and arginine rich splicing factor 1: a potential target for neuroprotection and other diseases.
Neural Regen Res. 2023 Jul;18(7):1411-1416. doi: 10.4103/1673-5374.360243.
6
Dichotomous role of integrin-β5 in lung endothelial cells.
Pulm Circ. 2022 Oct 1;12(4):e12156. doi: 10.1002/pul2.12156. eCollection 2022 Oct.
7
CircBCAR3 accelerates esophageal cancer tumorigenesis and metastasis via sponging miR-27a-3p.
Mol Cancer. 2022 Jul 15;21(1):145. doi: 10.1186/s12943-022-01615-8.
8
Mechanotransduction Regulates the Interplays Between Alveolar Epithelial and Vascular Endothelial Cells in Lung.
Front Physiol. 2022 Feb 18;13:818394. doi: 10.3389/fphys.2022.818394. eCollection 2022.
9
ADAR1 RNA editing regulates endothelial cell functions via the MDA-5 RNA sensing signaling pathway.
Life Sci Alliance. 2021 Dec 30;5(3). doi: 10.26508/lsa.202101191. Print 2022 Mar.
10
Cellular mechanosignaling in pulmonary arterial hypertension.
Biophys Rev. 2021 Sep 2;13(5):747-756. doi: 10.1007/s12551-021-00828-3. eCollection 2021 Oct.

本文引用的文献

1
circRNA CDR1as Promotes Pulmonary Artery Smooth Muscle Cell Calcification by Upregulating CAMK2D and CNN3 via Sponging miR-7-5p.
Mol Ther Nucleic Acids. 2020 Sep 23;22:530-541. doi: 10.1016/j.omtn.2020.09.018. eCollection 2020 Dec 4.
2
SGK1 Mediates Hypoxic Pulmonary Hypertension through Promoting Macrophage Infiltration and Activation.
Anal Cell Pathol (Amst). 2019 Nov 13;2019:3013765. doi: 10.1155/2019/3013765. eCollection 2019.
3
Vascular Endothelial Cell Biology: An Update.
Int J Mol Sci. 2019 Sep 7;20(18):4411. doi: 10.3390/ijms20184411.
4
The Search for Disease-Modifying Therapies in Pulmonary Hypertension.
J Cardiovasc Pharmacol Ther. 2019 Jul;24(4):334-354. doi: 10.1177/1074248419829172. Epub 2019 Feb 17.
5
BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension.
Circulation. 2019 May 7;139(19):2238-2255. doi: 10.1161/CIRCULATIONAHA.118.035889.
6
Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension.
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1322-H1331. doi: 10.1152/ajpheart.00136.2018. Epub 2018 Aug 24.
7
Pulmonary Arterial Stiffness: An Early and Pervasive Driver of Pulmonary Arterial Hypertension.
Front Med (Lausanne). 2018 Jul 18;5:204. doi: 10.3389/fmed.2018.00204. eCollection 2018.
8
Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover Conference Series).
Pulm Circ. 2018 Jan-Mar;8(1):2045893217752912. doi: 10.1177/2045893217752912. Epub 2017 Dec 28.
9
Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth.
J Biol Chem. 2018 Jan 26;293(4):1120-1137. doi: 10.1074/jbc.M117.814368. Epub 2017 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验