Suppr超能文献

基于过氧化钙的氧生成支架的工程设计用于组织存活。

Engineering calcium peroxide based oxygen generating scaffolds for tissue survival.

机构信息

Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.

出版信息

Biomater Sci. 2021 Apr 7;9(7):2519-2532. doi: 10.1039/d0bm02048f. Epub 2021 Feb 10.

Abstract

Oxygen supply is essential for the long-term viability and function of tissue engineered constructs in vitro and in vivo. The integration with the host blood supply as the primary source of oxygen to cells requires 4 to 5 weeks in vivo and involves neovascularization stages to support the delivery of oxygenated blood to cells. Consequently, three-dimensional (3D) encapsulated cells during this process are prone to oxygen deprivation, cellular dysfunction, damage, and hypoxia-induced necrosis. Here we demonstrate the use of calcium peroxide (CaO) and polycaprolactone (PCL), as part of an emerging paradigm of oxygen-generating scaffolds that substitute the host oxygen supply via hydrolytic degradation. The 35-day in vitro study showed predictable oxygen release kinetics that achieved 5% to 29% dissolved oxygen with increasing CaO loading. As a biomaterial, the iterations of 0 mg, 40 mg, and 60 mg of CaO loaded scaffolds yielded modular mechanical behaviors, ranging from 5-20 kPa in compressive strength. The other controlled physiochemical features included swelling capacities of 22-33% and enzymatic degradation rates of 0.8% to 60% remaining mass. The 3D-encapsulation experiments of NIH/3T3 fibroblasts, L6 rat myoblasts, and primary cardiac fibroblasts in these scaffolds showed enhanced cell survival, proliferation, and function under hypoxia. During continuous oxygen release, the scaffolds maintained a stable tissue culture system between pH 8 to 9. The broad basis of this work supports prospects in the expansion of robust and clinically translatable tissue constructs.

摘要

氧气供应对于组织工程构建体在体外和体内的长期存活和功能至关重要。与宿主血液供应的整合作为细胞的主要氧气来源,需要在体内 4 到 5 周的时间,涉及新生血管化阶段,以支持含氧血液向细胞的输送。因此,在这个过程中,三维(3D)包封的细胞容易缺氧、细胞功能障碍、损伤和缺氧诱导的坏死。在这里,我们展示了用过氧化钙(CaO)和聚己内酯(PCL)的应用,作为一种新兴的氧气产生支架范例的一部分,通过水解降解来替代宿主的氧气供应。35 天的体外研究表明,氧气释放动力学可预测,随着 CaO 负载的增加,达到 5%至 29%的溶解氧。作为一种生物材料,0mg、40mg 和 60mg CaO 负载支架的迭代具有模块化的机械性能,抗压强度范围为 5-20kPa。其他受控的物理化学特性包括 22-33%的溶胀能力和 0.8%至 60%剩余质量的酶降解率。在这些支架中对 NIH/3T3 成纤维细胞、L6 大鼠成肌细胞和原代心肌成纤维细胞的 3D 包封实验表明,在缺氧条件下,细胞存活率、增殖和功能得到增强。在持续释放氧气的过程中,支架在 pH 值为 8 到 9 之间维持了一个稳定的组织培养系统。这项工作的广泛基础支持了扩展健壮和可临床转化的组织构建体的前景。

相似文献

1
Engineering calcium peroxide based oxygen generating scaffolds for tissue survival.
Biomater Sci. 2021 Apr 7;9(7):2519-2532. doi: 10.1039/d0bm02048f. Epub 2021 Feb 10.
2
Oxygen-Generating Scaffolds for Cardiac Tissue Engineering Applications.
ACS Biomater Sci Eng. 2023 Jan 9;9(1):409-426. doi: 10.1021/acsbiomaterials.2c00853. Epub 2022 Dec 5.
3
Oxygen generating scaffolds regenerate critical size bone defects.
Bioact Mater. 2021 Nov 10;13:64-81. doi: 10.1016/j.bioactmat.2021.11.002. eCollection 2022 Jul.
4
3D printed O-generating scaffolds enhance osteoprogenitor- and type H vessel recruitment during bone healing.
Acta Biomater. 2024 Sep 1;185:126-143. doi: 10.1016/j.actbio.2024.07.011. Epub 2024 Jul 14.
5
In Situ Oxygen Generation Enhances the SCAP Survival in Hydrogel Constructs.
J Dent Res. 2021 Sep;100(10):1127-1135. doi: 10.1177/00220345211027155. Epub 2021 Jul 30.
6
Oxygen generating scaffolds for enhancing engineered tissue survival.
Biomaterials. 2009 Feb;30(5):757-62. doi: 10.1016/j.biomaterials.2008.09.065. Epub 2008 Nov 18.
7
3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival.
Mater Sci Eng C Mater Biol Appl. 2018 Mar 1;84:236-242. doi: 10.1016/j.msec.2017.11.037. Epub 2017 Nov 28.
8
Regenerative engineered vascularized bone mediated by calcium peroxide.
J Biomed Mater Res A. 2020 May;108(5):1045-1057. doi: 10.1002/jbm.a.36879. Epub 2020 Jan 22.
9
Printable oxygen-generating biodegradable scaffold for thicker tissue-engineered medical products.
Artif Organs. 2024 Apr;48(4):402-407. doi: 10.1111/aor.14713. Epub 2024 Jan 29.
10
Scaffolds with high oxygen content support osteogenic cell survival under hypoxia.
Biomater Sci. 2023 Aug 8;11(16):5560-5575. doi: 10.1039/d3bm00650f.

引用本文的文献

2
OPSALC: On-Particle Solvent-Assisted Lipid Coating to Create Erythrocyte Membrane-like Coatings with Improved Hemocompatibility.
ACS Appl Mater Interfaces. 2025 Mar 26;17(12):18179-18193. doi: 10.1021/acsami.5c02103. Epub 2025 Mar 13.
3
Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes.
Adv Funct Mater. 2024 Jul 10;34(28). doi: 10.1002/adfm.202315879. Epub 2024 Feb 8.
4
Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges.
Stem Cell Rev Rep. 2024 Oct;20(7):1692-1731. doi: 10.1007/s12015-024-10738-y. Epub 2024 Jul 19.
5
3D printed O-generating scaffolds enhance osteoprogenitor- and type H vessel recruitment during bone healing.
Acta Biomater. 2024 Sep 1;185:126-143. doi: 10.1016/j.actbio.2024.07.011. Epub 2024 Jul 14.
6
Fabricating oxygen self-supplying 3D printed bioactive hydrogel scaffold for augmented vascularized bone regeneration.
Bioact Mater. 2024 Jun 14;40:227-243. doi: 10.1016/j.bioactmat.2024.06.016. eCollection 2024 Oct.
7
Development of a Sprayable Hydrogel-Based Wound Dressing: An In Vitro Model.
Gels. 2024 Mar 1;10(3):176. doi: 10.3390/gels10030176.
8
Oxygen generating biomaterials at the forefront of regenerative medicine: advances in bone regeneration.
Front Bioeng Biotechnol. 2024 Jan 12;12:1292171. doi: 10.3389/fbioe.2024.1292171. eCollection 2024.
9
Hydrogel-Impregnated Self-Oxygenating Electrospun Scaffolds for Bone Tissue Engineering.
Bioengineering (Basel). 2023 Jul 19;10(7):854. doi: 10.3390/bioengineering10070854.
10
Scaffolds with high oxygen content support osteogenic cell survival under hypoxia.
Biomater Sci. 2023 Aug 8;11(16):5560-5575. doi: 10.1039/d3bm00650f.

本文引用的文献

1
Synthesis and characterization of photocrosslinkable hydrogels from bovine skin gelatin.
RSC Adv. 2019 Apr 29;9(23):13016-13025. doi: 10.1039/c9ra00655a. eCollection 2019 Apr 25.
2
Oxygen-Generating Photo-Cross-Linkable Hydrogels Support Cardiac Progenitor Cell Survival by Reducing Hypoxia-Induced Necrosis.
ACS Biomater Sci Eng. 2017 Sep 11;3(9):1964-1971. doi: 10.1021/acsbiomaterials.6b00109. Epub 2016 Jun 20.
3
Flexible Adipose-Vascular Tissue Assembly Using Combinational 3D Printing for Volume-Stable Soft Tissue Reconstruction.
Adv Healthc Mater. 2021 Mar;10(6):e2001693. doi: 10.1002/adhm.202001693. Epub 2020 Nov 25.
4
Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent.
Biomaterials. 2021 Jan;266:120477. doi: 10.1016/j.biomaterials.2020.120477. Epub 2020 Oct 19.
6
Hydroxyapatite-Incorporated Composite Gels Improve Mechanical Properties and Bioactivity of Bone Scaffolds.
Macromol Biosci. 2020 Oct;20(10):e2000176. doi: 10.1002/mabi.202000176. Epub 2020 Aug 5.
7
3D Patterning of cells in Magnetic Scaffolds for Tissue Engineering.
Sci Rep. 2020 Feb 10;10(1):2289. doi: 10.1038/s41598-020-58738-5.
8
Polycaprolactone as biomaterial for bone scaffolds: Review of literature.
J Oral Biol Craniofac Res. 2020 Jan-Mar;10(1):381-388. doi: 10.1016/j.jobcr.2019.10.003. Epub 2019 Nov 5.
9
Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels.
Sci Adv. 2019 Sep 6;5(9):eaaw2459. doi: 10.1126/sciadv.aaw2459. eCollection 2019 Sep.
10
Fabrication of amine-decorated nonspherical microparticles with calcium peroxide cargo for controlled release of oxygen.
J Biomed Mater Res A. 2020 Jan;108(1):136-147. doi: 10.1002/jbm.a.36799. Epub 2019 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验