Li Gang, Zeng Yawen, Huang Huilan, Song Shaojian, Liu Bin, Liao Xiang
College of Electrical Engineering, Guangxi University, Nanning 530000, China.
College of Mechanical Engineering, Guangxi University, Nanning 530000, China.
Sensors (Basel). 2021 Feb 8;21(4):1196. doi: 10.3390/s21041196.
The traditional simultaneous localization and mapping (SLAM) system uses static points of the environment as features for real-time localization and mapping. When there are few available point features, the system is difficult to implement. A feasible solution is to introduce line features. In complex scenarios containing rich line segments, the description of line segments is not strongly differentiated, which can lead to incorrect association of line segment data, thus introducing errors into the system and aggravating the cumulative error of the system. To address this problem, a point-line stereo visual SLAM system incorporating semantic invariants is proposed in this paper. This system improves the accuracy of line feature matching by fusing line features with image semantic invariant information. When defining the error function, the semantic invariant is fused with the reprojection error function, and the semantic constraint is applied to reduce the cumulative error of the poses in the long-term tracking process. Experiments on the Office sequence of the TartanAir dataset and the KITTI dataset show that this system improves the matching accuracy of line features and suppresses the cumulative error of the SLAM system to some extent, and the mean relative pose error (RPE) is 1.38 and 0.0593 m, respectively.
传统的同步定位与地图构建(SLAM)系统利用环境中的静态点作为特征进行实时定位与地图构建。当可用的点特征较少时,该系统难以实现。一个可行的解决方案是引入线特征。在包含丰富线段的复杂场景中,线段的描述差异不大,这可能导致线段数据的错误关联,从而将误差引入系统并加剧系统的累积误差。为了解决这个问题,本文提出了一种结合语义不变量的点线立体视觉SLAM系统。该系统通过将线特征与图像语义不变量信息融合来提高线特征匹配的准确性。在定义误差函数时,将语义不变量与重投影误差函数融合,并应用语义约束来减少长期跟踪过程中姿态的累积误差。在TartanAir数据集的Office序列和KITTI数据集上进行的实验表明,该系统提高了线特征的匹配精度,并在一定程度上抑制了SLAM系统的累积误差,平均相对姿态误差(RPE)分别为1.38和0.0593米。