A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
Commun Biol. 2021 Feb 10;4(1):179. doi: 10.1038/s42003-021-01699-w.
Tracing the entirety of ultrastructures in large three-dimensional electron microscopy (3D-EM) images of the brain tissue requires automated segmentation techniques. Current segmentation techniques use deep convolutional neural networks (DCNNs) and rely on high-contrast cellular membranes and high-resolution EM volumes. On the other hand, segmenting low-resolution, large EM volumes requires methods to account for severe membrane discontinuities inescapable. Therefore, we developed DeepACSON, which performs DCNN-based semantic segmentation and shape-decomposition-based instance segmentation. DeepACSON instance segmentation uses the tubularity of myelinated axons and decomposes under-segmented myelinated axons into their constituent axons. We applied DeepACSON to ten EM volumes of rats after sham-operation or traumatic brain injury, segmenting hundreds of thousands of long-span myelinated axons, thousands of cell nuclei, and millions of mitochondria with excellent evaluation scores. DeepACSON quantified the morphology and spatial aspects of white matter ultrastructures, capturing nanoscopic morphological alterations five months after the injury.
追踪大脑组织的大三维电子显微镜 (3D-EM) 图像中的所有超微结构需要自动化的分割技术。当前的分割技术使用深度卷积神经网络 (DCNN),并依赖于高对比度的细胞膜和高分辨率的 EM 体。另一方面,分割低分辨率、大 EM 体需要考虑不可避免的严重膜不连续性的方法。因此,我们开发了 DeepACSON,它执行基于 DCNN 的语义分割和基于形状分解的实例分割。DeepACSON 实例分割利用有髓轴突的管状结构,并将未分割的有髓轴突分解为其组成轴突。我们将 DeepACSON 应用于假手术或创伤性脑损伤后的十个人类 EM 体,分割了数十万条长跨度的有髓轴突、数千个细胞核和数百万个线粒体,具有出色的评估分数。DeepACSON 量化了白质超微结构的形态和空间方面,捕捉到了损伤五个月后的纳米级形态改变。