Zhao Fenqiang, Wu Zhengwang, Wang Li, Lin Weili, Xia Shunren, Shen Dinggang, Li Gang
Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Mach Learn Med Imaging. 2020 Oct;12436:373-383. doi: 10.1007/978-3-030-59861-7_38. Epub 2020 Sep 29.
Current spherical surface registration methods achieve good performance on alignment and spatial normalization of cortical surfaces across individuals in neuroimaging analysis. However, they are computationally intensive, since they have to optimize an objective function independently for each pair of surfaces. In this paper, we present a fast learning-based algorithm that makes use of the recent development in spherical Convolutional Neural Networks (CNNs) for spherical cortical surface registration. Given a set of surface pairs without supervised information such as ground truth deformation fields or anatomical landmarks, we formulate the registration as a parametric function and learn its parameters by enforcing the feature similarity between one surface and the other one warped by the estimated deformation field using the function. Then, given a new pair of surfaces, we can quickly infer the spherical deformation field registering one surface to the other one. We model this parametric function using three orthogonal Spherical U-Nets and use spherical transform layers to warp the spherical surfaces, while imposing smoothness constraints on the deformation field. All the layers in the network are well-defined and differentiable, thus the parameters can be effectively learned. We show that our method achieves accurate cortical alignment results on 102 subjects, comparable to two state-of-the-art methods: Spherical Demons and MSM, while runs much faster.
当前的球面配准方法在神经成像分析中对个体间皮质表面的对齐和空间归一化方面表现良好。然而,它们计算量很大,因为它们必须针对每对表面独立优化一个目标函数。在本文中,我们提出了一种基于快速学习的算法,该算法利用球面卷积神经网络(CNN)的最新进展进行球面皮质表面配准。给定一组没有诸如真实变形场或解剖标志等监督信息的表面对,我们将配准公式化为一个参数函数,并通过使用该函数对一个表面与由估计变形场扭曲的另一个表面之间的特征相似性进行强制约束来学习其参数。然后,给定一对新的表面,我们可以快速推断出将一个表面配准到另一个表面的球面变形场。我们使用三个正交的球面U-Net对这个参数函数进行建模,并使用球面变换层来扭曲球面,同时对变形场施加平滑约束。网络中的所有层都定义明确且可微,因此可以有效地学习参数。我们表明,我们的方法在102名受试者上取得了准确的皮质对齐结果,与两种最先进的方法:球面魔鬼算法(Spherical Demons)和多尺度模型(MSM)相当,但运行速度要快得多。