Suppr超能文献

用于球面配准的无监督学习

Unsupervised Learning for Spherical Surface Registration.

作者信息

Zhao Fenqiang, Wu Zhengwang, Wang Li, Lin Weili, Xia Shunren, Shen Dinggang, Li Gang

机构信息

Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Mach Learn Med Imaging. 2020 Oct;12436:373-383. doi: 10.1007/978-3-030-59861-7_38. Epub 2020 Sep 29.

Abstract

Current spherical surface registration methods achieve good performance on alignment and spatial normalization of cortical surfaces across individuals in neuroimaging analysis. However, they are computationally intensive, since they have to optimize an objective function independently for each pair of surfaces. In this paper, we present a fast learning-based algorithm that makes use of the recent development in spherical Convolutional Neural Networks (CNNs) for spherical cortical surface registration. Given a set of surface pairs without supervised information such as ground truth deformation fields or anatomical landmarks, we formulate the registration as a parametric function and learn its parameters by enforcing the feature similarity between one surface and the other one warped by the estimated deformation field using the function. Then, given a new pair of surfaces, we can quickly infer the spherical deformation field registering one surface to the other one. We model this parametric function using three orthogonal Spherical U-Nets and use spherical transform layers to warp the spherical surfaces, while imposing smoothness constraints on the deformation field. All the layers in the network are well-defined and differentiable, thus the parameters can be effectively learned. We show that our method achieves accurate cortical alignment results on 102 subjects, comparable to two state-of-the-art methods: Spherical Demons and MSM, while runs much faster.

摘要

当前的球面配准方法在神经成像分析中对个体间皮质表面的对齐和空间归一化方面表现良好。然而,它们计算量很大,因为它们必须针对每对表面独立优化一个目标函数。在本文中,我们提出了一种基于快速学习的算法,该算法利用球面卷积神经网络(CNN)的最新进展进行球面皮质表面配准。给定一组没有诸如真实变形场或解剖标志等监督信息的表面对,我们将配准公式化为一个参数函数,并通过使用该函数对一个表面与由估计变形场扭曲的另一个表面之间的特征相似性进行强制约束来学习其参数。然后,给定一对新的表面,我们可以快速推断出将一个表面配准到另一个表面的球面变形场。我们使用三个正交的球面U-Net对这个参数函数进行建模,并使用球面变换层来扭曲球面,同时对变形场施加平滑约束。网络中的所有层都定义明确且可微,因此可以有效地学习参数。我们表明,我们的方法在102名受试者上取得了准确的皮质对齐结果,与两种最先进的方法:球面魔鬼算法(Spherical Demons)和多尺度模型(MSM)相当,但运行速度要快得多。

相似文献

1
Unsupervised Learning for Spherical Surface Registration.用于球面配准的无监督学习
Mach Learn Med Imaging. 2020 Oct;12436:373-383. doi: 10.1007/978-3-030-59861-7_38. Epub 2020 Sep 29.
2
S3Reg: Superfast Spherical Surface Registration Based on Deep Learning.S3Reg:基于深度学习的超快速球面配准。
IEEE Trans Med Imaging. 2021 Aug;40(8):1964-1976. doi: 10.1109/TMI.2021.3069645. Epub 2021 Jul 30.
5
Cortical Surface Parcellation using Spherical Convolutional Neural Networks.使用球面卷积神经网络进行皮质表面分割
Med Image Comput Comput Assist Interv. 2019 Oct;11766:501-509. doi: 10.1007/978-3-030-32248-9_56. Epub 2019 Oct 10.
7
Multimodal surface matching with higher-order smoothness constraints.多模态曲面匹配的高阶平滑约束。
Neuroimage. 2018 Feb 15;167:453-465. doi: 10.1016/j.neuroimage.2017.10.037. Epub 2017 Oct 31.
8
Fast Spherical Mapping of Cortical Surface Meshes Using Deep Unsupervised Learning.使用深度无监督学习对皮质表面网格进行快速球面映射
Med Image Comput Comput Assist Interv. 2022 Sep;13436:163-173. doi: 10.1007/978-3-031-16446-0_16. Epub 2022 Sep 17.

引用本文的文献

2
Learning 4D Infant Cortical Surface Atlas with Unsupervised Spherical Networks.使用无监督球面网络学习4D婴儿皮质表面图谱。
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12902:262-272. doi: 10.1007/978-3-030-87196-3_25. Epub 2021 Sep 21.
3
A Deep Network for Joint Registration and Parcellation of Cortical Surfaces.用于皮质表面联合配准与分割的深度网络。
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12904:171-181. doi: 10.1007/978-3-030-87202-1_17. Epub 2021 Sep 21.

本文引用的文献

1
Metric Learning for Image Registration.用于图像配准的度量学习
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8455-8464. doi: 10.1109/cvpr.2019.00866. Epub 2020 Jan 9.
2
Spherical U-Net on Cortical Surfaces: Methods and Applications.皮质表面的球形U-Net:方法与应用
Inf Process Med Imaging. 2019 Jun;11492:855-866. doi: 10.1007/978-3-030-20351-1_67. Epub 2019 May 22.
5
Computational neuroanatomy of baby brains: A review.婴儿大脑的计算神经解剖学:综述。
Neuroimage. 2019 Jan 15;185:906-925. doi: 10.1016/j.neuroimage.2018.03.042. Epub 2018 Mar 21.
6
Multimodal surface matching with higher-order smoothness constraints.多模态曲面匹配的高阶平滑约束。
Neuroimage. 2018 Feb 15;167:453-465. doi: 10.1016/j.neuroimage.2017.10.037. Epub 2017 Oct 31.
7
Diffeomorphic functional brain surface alignment: Functional demons.微分同胚功能性脑表面对齐:功能恶魔算法
Neuroimage. 2017 Aug 1;156:456-465. doi: 10.1016/j.neuroimage.2017.04.028. Epub 2017 Apr 14.
10
MSM: a new flexible framework for Multimodal Surface Matching.MSM:一种用于多模态表面匹配的新型灵活框架。
Neuroimage. 2014 Oct 15;100:414-26. doi: 10.1016/j.neuroimage.2014.05.069. Epub 2014 Jun 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验